
Microsoft Windows®

Microsoft Windows 95™

Microsoft Windows NT™

COBOL85

User’s Guide

3.0

Third Edition: March 1997

The contents of this manual may be revised without prior notice. No part of
this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express
written permission of Fujitsu Limited.

© 1997 Fujitsu Limited. All Rights Reserved.

COBOL85 User’s Guide iii

Preface

COBOL85 allows you to create, execute, and debug COBOL
programs with Microsoft Windows 95, Windows NT and
Windows 3.1. This manual describes the functions and
operations of COBOL85, but does not detail COBOL syntax.
Refer to the “COBOL85 Reference Manual” for details on COBOL
syntax.

Throughout this manual, Windows 95 and Windows NT-specific
items are denoted with (32); Windows 3.1-specific items are
denoted with (16).

Audience

This manual is for users who develop COBOL programs using
COBOL85. This manual assumes users possess basic knowledge
of COBOL 85 and are familiar with the appropriate Windows
platform.

iv COBOL85 User’s Guide

How this Manual is Organized

This manual consists of the following chapters and appendixes:

Chapter Contents
Chapter 1. Overview of COBOL85 The operating environment and functions

of COBOL85.
Chapter 2. Creating and Editing a
Program

Writing a COBOL program.

Chapter 3. Compiling Programs Compiling COBOL programs.
Chapter 4. Linking Programs Linking COBOL programs.
Chapter 5. Executing Programs Executing a COBOL program that has been

compiled and linked.
Chapter 6. Project Management Registering files and control linker options.
Chapter 7. File Processing Using files.
Chapter 8. Printing Printing data and documents.
Chapter 9. Input-Output Using Screens Transferring data with screens.
Chapter 10. Calling Subprograms (Inter-
Program Communication)

Calling subprograms from a COBOL
program.

Chapter 11. Using ACCEPT and DISPLAY
Statements

The simplified input-output, command
line argument operation, and environment
variable operation functions, using
ACCEPT and DISPLAY statements.

Chapter 12. Using SORT/MERGE
Statements (Sort-Merge Function)

Sort-merge processing.

Chapter 13. System Program Description
(SD) Functions

Functions such as the pointer and ADDR,
used to create system programs.

Chapter 14. Communication Functions Using simplified inter-application and
other communication types.

Chapter 15. Database (SQL) Remote database access under ODBC.
Chapter 16. Distributed Development
Support Functions

Designing and developing COBOL
programs in a distributed environment.

COBOL85 User’s Guide v

Chapter Contents
Appendix A. Compiler Options The options provided for the COBOL85

compiler.
Appendix B. I-O Status List The values returned from input-output

statement execution, indicating I-O status
and their meanings.

Appendix C. Global Optimization The optimization performed by the
COBOL85 compiler.

Appendix D. Built-in Function List The list of COBOL85 built-in functions.
Appendix E. Special Registers Used with
Screen and Form Functions

The values set in the special registers for
screen and form functions.

Appendix F. Message Lists Compilation and execution messages.
Appendix G. Writing Special Literals Writing literals for Windows.
Appendix H. High-Speed File Processing Specifications for high-speed file

processing.
Appendix I. GS-series Function
Comparison

Compares the functions available with the
GS- series and this COBOL85.

Appendix J. Command Formats Compiler and linker command formats.
Appendix K. FCB Control Statement The specification of the FCB control

statement.
Appendix L. Indexed File Recovery Recovering indexed files (includes

examples, codes, and messages).
Appendix M. Using Other File Systems Using Btrieve and RDM files.
Appendix N. A COBOL-Supported
Subroutine

The subroutine for receiving a window
handle.

vi COBOL85 User’s Guide

How to Use This Manual

If you are a first-time user of this product, start with Chapter 1.

If you want information about the steps from COBOL program
generation to execution, refer to Chapter 2 through Chapter 6.

If you want to know how to use various functions of COBOL85,
refer to Chapter 7 through Chapter 13.

COBOL85 User’s Guide vii

 Conventions Used in this Manual

This manual uses the following typographic conventions.

Example of Convention Description
setup Characters you enter appear in bold.
Program-name Underlined text indicates a place holder

for information you supply.

ENTER Small capital letters are used for the
name of keys and key sequences such
as ENTER and CTRL+R. A plus sign
(+) indicates a combination of keys.

… Ellipses indicate the item immediately
preceding can be specified repeatedly.

Edit, Literal Names of pulldown menus and
options appear with the initial letter
capitalized.

[def] Indicates that the enclosed item may be
omitted.

{ABC|DEF} Indicates that one of the enclosed items
delimited by | is to be selected.

CHECK
WITH PASCAL LINKAGE
ALL
PARAGRAPH-ID
COBOL
ALL

Commands, statements, clauses, and
options you enter or select appear in
uppercase. Program section names, and
some proper names also appear in
uppercase. Defaults are underlined.

PROCEDURE DIVISION
 :
 ADD 1 TO POW-FONTSIZE OF LABEL1.
 IF POW-FONTSIZE OF LABEL1 > 70 THEN
 MOVE 1 TOW POW-FONTSIZE OF LABEL1.
 END-IF.

This font is used for examples of
program code.

The sheet acts as an application creation
window.

Italics are occasionally used for
emphasis.

“COBOL Reference Manual”
Refer to “Compile Options” in Chapter 5.

References to other publications or
sections within publications are in
quotation marks.

viii COBOL85 User’s Guide

Differences Between Operating Systems

Windows 95 and Windows NT are occasionally denoted with
(32); Windows 3.1 is occasionally denoted with (16). COBOL85
supports the following operating systems:

• Windows 95 Operating System

• Windows NT Workstation Operating System 3.5

• Windows NT Server Network Operating System 3.5

• Windows Operating System 3.1

We have tried to make all of our examples position-sensitive.
However, given the restrictions of the size of the page, in some
examples we have not been able to accomplish this. You should
be aware that COBOL85 is a position-sensitive language.

The term national language or national in this manual indicates
double byte character languages, such as Japanese, Korean, or
Chinese. Functions that are only available in the national
language version of this system are indicated by [*XXXXXX*].

COBOL85 User’s Guide ix

Related Manuals

Other manuals for COBOL85 and related products:
Title Contents
“COBOL85 Reference Manual” Detailed explanation of COBOL85 syntax (open

system)

“Getting Started with Fujitsu COBOL” Demonstration of COBOL85 functions using the
sample programs as examples

“FUJITSU COBOL Debugging Guide” Explanation of the debugging functions of
COBOL85

”Migration Guide MF to Fujitsu
COBOL”

Migration information related to converting
COBOL applications from Micro Focus to COBL85

“COBOL Debugging Manual” Usage information associated with the COBOL85
“Power COBOL User’s Guide” Information related to using Power COBOL

graphical programming capabilities
“Power COBOL Programming Guide” Explanation of how to create graphical COBOL

applications
“Power FORM Getting Started” Explanation of how to create form descriptors

The following products are not supported in the English-
language version of this product:

• SequeLink

• MeFt/NET

• MeFt/NET-SV

• BS*NET

• RDB/7000 Server for Windows NT

• RDB II

• RDB II Esql-COBOL

• PowerAIM

x COBOL85 User’s Guide

Trademarks

MS-DOS, Visual Basic, Windows, are registered trademarks and
Visual C++, Microsoft Open Database Connectivity Software
Development Kit, Windows 95, and Windows NT are
trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company
Limited.

Btrieve is a trademark of Btrieve Technologies, Inc.

NetWare is a registered trademark of Novell, Inc.

HP, HP-UX, and SoftBench are trademarks of the Hewlett-
Packard Company.

Oracle is a registered trademark of Oracle Corporation.

SequeLink is a registered trademark of TechGnOsIs
International, Inc.

INFORMIX is a registered trademark of Informix Software Co.

EPSON ESC/P is a registered trademark of Seiko Epson, Inc.

LIPS is a registered trademark of Canon, Inc.

Sun is a trademark of Sun Microsystems Company (U.S.).

Other product names are trademarks or registered trademarks of
each company. Trademark indications are omitted for some
system and product names described in this manual.

COBOL85 User’s Guide xi

Acknowledgment

The language specifications of COBOL are based on the original
specifications developed by the work of the Conference on Data
Systems Languages (CODASYL). The specifications described in
this manual are also derived from the original. The following
passages are quoted at the request of CODASYL.

“COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or group
of organizations. No warranty, expressed or implied, is made by
the COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility
is assumed by the committee, in connection therewith.

“The authors of the following copyrighted material have
authorized the use of this material in part in the COBOL
specifications. Such authorization extends to the use of the
original specifications in other COBOL specifications:

• FLOW-MATIC (Trademark of Sperry Rand Corporation),
Processing for the UNIVAC I and II, Data Automation
Systems, copyrighted 1958, 1959, by Sperry Rand
Corporation.

• IBM Commercial Translator, Form No. F28-8013, copyrighted
1959 by International Business Machines Corporation.

• FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-
Honeywell.”

All Rights Reserved, Copyright, Fujitsu Limited 1996.

All Rights Reserved, Copyright, Microsoft Corporation, 1983-
1996.

xii COBOL85 User’s Guide

COBOL85 User’s Guide xiii

Contents

Chapter 1. Overview of COBOL85.. 1

COBOL85 Functions... 2
COBOL Functions... 2
Programs and Utilities Provided by COBOL85 ... 3

COBOL85 Development Environment ... 7
Setting Up Environment Variables ... 8
Related Products..10

Developing a Program ..11

Chapter 2. Creating and Editing a Program..15

Creating the Program..16
Creating and Editing a COBOL Source Program ...16

Creating Library Text ..18
Program Format...19

Fixed Format..19
Variable Format ...19
Free Format ..20

Compiler Directing Statement ..20

Chapter 3. Compiling Programs...23

Compiling Sample Programs..24
Windows 95 and Windows NT..24
Windows 3.1 ..29

Resources Necessary for Compilation ...34
Files Used by the COBOL85 Compiler ..34
Information Provided by the COBOL85 Compiler...38

Compiling a COBOL Source Program ...40
Compiling a Single Source File...40
Compiling Several Source Files ..41

WINCOB Window...43
Activating the WINCOB Window (32) ..43
Specifying Continuous Compilation..44
Specifying a File Name..46
Setting Compiler Options ...47
Specifying the Main Program...47

xiv COBOL85 User’s Guide

Starting and Quitting Compilation ..49
Compiler Options Dialog Box ..50

Setting Compiler Options ...50
Setting a Library Name...54

Correcting a Compile Error ..59
Compile Messages...59
Using Error Search ..60

Using Commands to Compile ..63
COBOL32 Commands...63

Chapter 4. Linking Programs ...67

Linking Sample Programs...68
Windows 95 and Windows NT..68
Windows 3.1 ..70

Resources Required for Linking ...71
Executable Files ...75
DLLs ...76
Import Library ...76
Module Definition File ..76

Linkage Types and Program Structure ..81
Link Procedures...84

Linking a Single Object Program..84
Creating a DLL ..85
Creating an Executable Program with a Simple Structure...................................85
Creating an Executable Program with a Dynamic Link Structure86
Creating an Executable Program with a Dynamic Program Structure88
Creating a Library ...89
Creating an Import Library ..89

WINLINK...90
Activating the WINLINK Window..90
WINLINK [Linking Files] Window..91
Starting and Quitting Linking ..97
WINLINK [Building COBOL Libraries] Window ..98

Using Commands to Link ...101
LINK Command (32)...102
LIB Command (32) ..102
Examples of Using the LINK and LIB commands (32)102
LINK Command (16)...103

Linker Messages ..105
Windows 95 and Windows NT..105
Linker Messages (16)...107

COBOL85 User’s Guide xv

Chapter 5. Executing Programs ..109

Executing Sample Programs...110
Windows 95 and Windows NT..110
Windows 3.1 ..113

Execution Procedures..117
Before Executing COBOL Programs..117
Executing COBOL Programs..118

Setting Run-time Environment Information..119
Types of Run-time Environment Information...119
How to Set Run-time Environment Information ..122

Format of Run-time Environment Information...129
Environment Variables ...129
Entry Information..147

WINEXEC ..152
Activating the WINEXEC Window (32) ..152
Activating the WINEXEC Window (16) ..154
Entering a File Name...154
Starting and Quitting Execution...155

Run-time Environment Setup Window (32)..155
Setting Environment Variable Information ...158
Setting Entry Information ...160
Saving to the Initialization File...161
Setting Printers ..161
Exiting the Run-time Environment Setup Window..162

Run-time Environment Setup Window (16)..162
Setting Environment Variable Information ...163
Setting Entry Information ...164
Saving to the Initialization File...165
Exiting from the Run-time Environment Setup Window165

Format of Run-time Options...166

Chapter 6. Project Management ...169

What is the Project Management Function? ..170
Resources Required for Project Management ...171
Project Management Procedures..173
Project Window ...175

Creating the Project File..176
Registering Files...177
Setting Compiler Options ...183
Setting Linker Options ..185

xvi COBOL85 User’s Guide

Creating the Module Definition File ..185
Building and Rebuilding the Project ..187
Modifying File Contents ...187
Executing Application Programs ...188

Chapter 7. File Processing...189

File Organization Types ..190
File Organization Types and Characteristics ..190
Record Sequential Files ...191
Line Sequential Files..192
Relative Files ..193
Indexed Files ..194
Designing Records...194
Processing Files..196

Using Record Sequential Files ..198
Defining Record Sequential Files ...199
Defining Record Sequential File Records ..201
Processing Record Sequential Files ..202
Processing Outline...204

Using Line Sequential Files...206
Defining Line Sequential Files ..206
Defining Line Sequential File Records...207
Processing Line Sequential Files...208
Processing Outline...210

Using Relative Files ...211
Defining Relative Files ..212
Defining Relative File Records ...214
Processing Relative Files ...215
Processing Outline...218

Using Indexed Files ...221
Defining Indexed Files ..222
Defining Indexed File Records ...224
Processing Indexed Files...226
Processing Outline...228

Input-Output Error Processing...232
AT END Specification ...232
INVALID KEY Specification ..233
FILE STATUS Clause ..233
Error Procedures ...234
Input-Output Error Execution Results ..235

File Processing..236

COBOL85 User’s Guide xvii

Assigning Files...237
Exclusive Control of Files ...240
File Processing Results ..244

COBOL85 FILE UTILITY ..246
Using the COBOL85 FILE UTILITY...246
COBOL85 FILE UTILITY Functions ..251

Chapter 8. Printing...267

Types of Printing Methods ...268
Outline of Printing Methods...268
Print Characters...271
Form Overlay Patterns..275
Forms Control Buffers (FCB)..276
Form Descriptors...277

Using Print File 1 ...278
Outline..279
Program Specifications..280
Program Execution..283
Examples of Programs ..287

Using Print File 2 ...292
Outline..293
Program Specifications..293
Program Execution..302

Using Print Files with Form Descriptors ...307
Outline..308
Program Specifications..308
Program Execution..314

Using Presentation Files (Printing Forms)...315
Outline..316
Work Procedures...317
Generating Form Descriptors ...318
Program Specifications..319
Generating Printer Information Files ...323
Program Execution..324

Chapter 9. Input-Output Using Screens ...327

Types of Input-Output Using Screens..328
Using Presentation Files (Screen Input-Output) ...329

Outline..329
Operation Environments ..329
Work Procedures...332

xviii COBOL85 User’s Guide

Generating Screen Descriptors ...332
Program Specification ...333
Generating Window Information Files ..340
Program Execution..341

Using the Screen Handling Function ...343
Outline..344
Screen Windows ..344
User-Defined Function Keys ..345
Program Specification ...346
Program Execution..350

Chapter 10. Calling Subprograms (Inter-Program Communication)353

Outline of Calling Relationships...354
Calling Relationship Forms ..354
Differences Among Linkage Rules...355
Linkage Rules and Supporting Compilers ..356

Calling COBOL Programs from COBOL Programs ...356
Calling Method..356
Secondary Entry Points...357
Returning Control and Exiting Programs..357
Passing Parameters..358
Sharing Data ..359
Return Codes ...360
Internal Programs..361
Notes...363

Linking C Programs ..364
Calling C Programs from COBOL Programs..364
Calling COBOL Programs from C Programs..368
Correspondence of Data Types ..369
Compiling Programs ...371
Executing Programs ..381

Chapter 11. Using ACCEPT and DISPLAY Statements..383

ACCEPT/DISPLAY Function...384
Outline..384
Input/Output Destination Types and Specification Methods...........................385
Reading/Writing Data with Console Windows ...386
Writing Messages to Message Boxes ...390
Programs Using Files ..392
Entering Current Date and Time..397

Fetching Command Line Arguments...399

COBOL85 User’s Guide xix

Outline..399
Environment Variable Handling Function ..403

Outline..403

Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function)407

Outline of Sort and Merge Processing ...408
Sort..408
Merge..408

Using Sort...409
Types of Sort Processing ...411
Program Specifications..411
Program Compilation and Linkage..413
Program Execution..414

Using Merge...415
Types of Merge Processing ...417
Program Specifications..417
Program Compilation and Linkage..419
Program Execution..419

Chapter 13. System Program Description (SD) Functions......................................421

Types of System Program Description Functions...422
Pointer ..422
ADDR Function and LENG Function..422
PERFORM Statement without an “at end” Condition423

Using Pointers..423
Outline..423
Program Specifications..424
Program Compilation and Linkage..425
Program Execution..425

Using the ADDR and LENG Functions ...426
Outline..426
Program Specifications..426
Program Compilation and Linkage..427
Program Execution..427

Using the PERFORM Statement without an “at end” Condition428
Outline..428
Program Specifications..428
Program Compilation and Linkage..429
Program Execution..429

Chapter 14. Communication Functions...431

xx COBOL85 User’s Guide

Communication Types ..432
Using Presentation File Module (Asynchronous Message Communication)434

Outline..435
Operating Environment ..435
Program Specifications..436
Program Compilation and Linkage..440
Program Execution..440
Using ACM Communication..441

Using Presentation File Module (Synchronous Communication Programs)........442
Outline..443
Program Specifications..445
Program Compilation and Linkage..449
Program Execution..449

Using Simplified Inter-application Communication...449
Outline..449
Operating Procedures ...450
Server Operation Windows ..454
Client Operation Window ..473
Estimating Memory...478

Simplified Inter-application Communication Functions ..480
COBCI_OPEN..482
COBCI_CLOSE ..484
COBCI_READ..485
COBCI_WRITE ..488

Error Codes ..493

Chapter 15. Database (SQL) ...501

ODBC Outline..502
Configuration of a COBOL Program with SQL ..503
Operations Using Embedded SQL...504

Connection ...505
Connecting to a Server ..505
Disconnecting from a Server ..507
Selecting a Connection ..507

Manipulating Data...511
Sample Database..512
Retrieving Data..514
Updating Data ...522
Deleting Data ...523
Inserting Data ..523
Using Dynamic SQL..524

COBOL85 User’s Guide xxi

Using Variable Length Character Strings ..530
Operating the Cursor with More than One Connection.....................................533

Compiling the Program...535
Executing the Program..536

Constructing the Program Execution Environment ...536
Defining Default Connection Information...541
Using the ODBC Information Setup Tool..542
Maximum Length of Information Specified in the ODBC Information File.....543
Preparing Linkage Software and the Hardware Environment..........................543

Embedded SQL Keyword List..545
Correspondence Between ODBC-Handled Data and COBOL85-Handled Data .548
SQLSTATE, SQLCODE, and SQLMSG ...550
Notes on Using the ODBC Driver..552

Notes on SQL Statement Syntax...552
Notes on Executing Embedded SQL Statements ..553
Quantitative Limits of Embedded SQL Statement at Execution554

Chapter 16. Distributed Development Support Functions555

Outline of Distributed Development ...556
Scope of Distributed Development Functions...557
Distributed Development Support Functions ...559

Target Language Construct ..559
Usage ..560

Presentation File Module Test Function ..568
Operating Environment ..568
Creating Files Required for Using the Presentation File Module Test Function569
Using the Presentation File Module Test Function...573
COBPRTST Dialog Box ...577

Appendix A. Compiler Options..581

List of Compiler Options ..581
Compiler Option Specification Formats ..584

Appendix B. I-O Status List ...611

Appendix C. Global Optimization ..619

Optimization ..619
Removing a Common Expression..620
Shifting an Invariant..621
Optimizing an Induction Variable ...622
Optimizing a PERFORM Statement...622

xxii COBOL85 User’s Guide

Integrating Adjacent Moves ...623
Eliminating Unnecessary Substitutions ...623

Notes...624

Appendix D. Intrinsic Function List ...627

Appendix E. Special Registers Used with Screen and Form Functions631

EDIT-MODE ..631
EDIT-STATUS..632
EDIT-COLOR...633
EDIT-OPTION ...633
EDIT-CURSOR ..634

Appendix F. Message Lists...635

Messages Output by WINCOB and Compile Commands.................................635
Messages Produced by the COBOL85 Compiler ..637
Messages Produced by the COBOL85 Run-time System639
System Error Codes...682

Appendix G. Writing Special Literals...685

Program Name Literal ..685
Text Name Literal..685
File-Identifier Literal ...686

Appendix H. High-Speed File Processing..689

Specification Methods ...689
Notes...690

Appendix I. GS-series Function Comparison ..691

Checking Program Operation...701
Notes...703

Appendix J. Command Formats...705

Compiler Commands..705
Linker Commands...712

Appendix K. FCB Control Statement ..723

Appendix L. Indexed File Recovery ..725

Indexed File Recovery Function...725

COBOL85 User’s Guide xxiii

Indexed File Simple Recovery Function ..728
Notes...730
Examples of Calling from COBOL...730
Codes and Messages ...733

Appendix M. Using Other File Systems...735

Btrieve File ...735
RDM File ..743

Appendix N. A COBOL-Supported Subroutine..747

Subroutine for Receiving the Window Handle...747
Notes...748
Subroutine for Receiving the Instance Handle..750

xxiv COBOL85 User’s Guide

Chapter 1. Overview of
COBOL85

This chapter explains the functions of COBOL85 and its
operating environment. If you are unfamiliar with COBOL85,
you should read this chapter before using the product.

This chapter also details how to establish a development
environment, set environment variables, and outlines the
procedure for developing a program.

2 Chapter 1. Overview of COBOL85

COBOL85 Functions

This section explains the COBOL functions and the various
utilities provided by COBOL85.

COBOL Functions

COBOL85 has the following COBOL functions:

• Nucleus

• Sequential file

• Relative file

• Indexed file

• Inter-program communication

• Sort-merge

• Source text manipulation

• Presentation file

• Database (SQL)

• System program description (SD)

• Screen handling

• Command line argument handling

• Environment variable operation

• Report writer

• Built-in function

• Floating-point number

Chapter 1. Overview of COBOL85 3

For information about how to write COBOL statements to use
these functions, refer to the “COBOL85 Reference Manual.”

Programs and Utilities Provided by COBOL85

COBOL85 provides the following programs and utilities for
developing programs under Windows 95, Windows NT or
Windows 3.1.

Table 1. COBOL85 programs and utilities

Name Purpose
COBOL85 compiler Compiles a described program using

COBOL85.
COBOL85 run-time system Executes a COBOL85 application.
COBOL85 interactive debugger Allows you to debug a COBOL85

application.
PROGRAMMING-STAFF (P-
STAFF)

The COBOL85 development
environment.

COBOL85 FILE UTILITY Processes a COBOL85 file.
COBOL presentation file module
test (16)

Activates a COBOL presentation file
module test function.

WINCOB command Activates the COBOL85 compiler.
WINLINK command Activates the linker.
WINEXEC command Activates a COBOL85 application.
WINMSG command (16) Activates the error search function.
Simplified inter-application
communication

Exchanges data between applications.

An overview of the programs and utilities follows.

4 Chapter 1. Overview of COBOL85

COBOL85 Compiler

The COBOL85 compiler compiles a COBOL source program to
create an object program. The compiler provides the following
service functions:

• Output compiler listings

• Checks standards and specifications

• Global optimization

• The tag-jump between a compile message and the editor
(error search function)

• Provides linkage with FORM (screen and form descriptors)
and Power FORM (form descriptors)

Specify these functions in accordance with the compiler options.

COBOL85 Run-time System

When you execute an application program created with
COBOL85, the COBOL run-time system is called and operated.

COBOL85 Interactive Debugger

You debug COBOL85 applications created under Windows 95,
Windows NT or Windows 3.1 with the COBOL85 interactive
debugger. The debugger is started by a simple operation from a
window, and can:

• Interrupt and restart program execution

• Reference and change the contents of a data area

• Interrupt when changing the value of a data area

• Display the execution route of a program (16)

Chapter 1. Overview of COBOL85 5

• Display the call route of a program

• Rerun the debugging operation

PROGRAMMING-STAFF (P-STAFF)

PROGRAMMING-STAFF (P-STAFF) provides a simple means of
editing, compiling, linking, executing, debugging, or maintaining
programs without switching windows.

6 Chapter 1. Overview of COBOL85

COBOL85 FILE UTILITY

The COBOL85 FILE UTILITY responds to utility commands
without referencing the COBOL application.

COBOL Presentation File Module Test Function

Use the presentation file module to conduct a unit test on an
application to execute interactive processing when development
of an application is being used with the mainframe system
designated as the host (GS-series). Note: This applies only to
users of the GS-series.

WINCOB, WINLINK, and WINEXEC Commands

The WINCOB, WINLINK and WINEXEC commands activate the
COBOL85 compiler, linker, and COBOL85 application. Use these
commands to enable the COBOL85 compiler, linker, and
application to be activated from a window.

WINMSG Command (16)

The WINMSG command opens a message file to be used with
the COBOL85 error search function. Only the Windows 3.1
version supports this command.

Simplified Inter-Application Communication

Simplified inter-application communication provides a means for
servers to exchange messages between user programs.

Chapter 1. Overview of COBOL85 7

COBOL85 Development Environment

The following figure provides an overview of the COBOL85
development environment.

Figure 1. The COBOL85 development environment

Applications created using the Windows 3.1 version of COBOL85
are executed as 16-bit applications. Applications created using
the Windows 95 and Windows NT version of COBOL85 are
executed as 32-bit applications.

8 Chapter 1. Overview of COBOL85

Setting Up Environment Variables

Set the following environment variables according to the
COBOL85 functions you want to use.

When using Windows 95, register in AUTOEXEC.BAT by using
the text editor.

When using Windows NT, set the variables at the system control
panel or command prompt. Refer to “Setting from the Control
Panel” and “Setting from the Command Prompt” in Chapter 5.

When using Windows 3.1, set the variables before activating
Windows.

Table 2. Setting environment variable

Setup Timing Environment
Variable

Details Conditions

Common PATH COBOL85 install
directory

FORM RTS install
directory

When using
COBOL85

When using
screen and form
descriptors

Required

Required

TMP Working
directory name

When using P-
STAFF

Required

TEMP Working
directory name

When using P-
STAFF

Required

At compilation
(32)

SMED_SUFFIX Extension of
screen and form
descriptors (any
character string)

When changing
the extension
PMD of screen
and form
descriptors

Optional

FORMLIB Directory name
of the file storing
screen and form
descriptors

When using
screen and form
descriptors

Optional

Chapter 1. Overview of COBOL85 9

Table 2. Setting environment variables (cont.)

Setup Timing Environment
Variable

Details Conditions

At compilation
(32)

FFD_SUFFIX Extension of file
descriptor (any
character string)

When changing
the extension FFD
of the file
descriptor

Optional

FILELIB Directory name
of file storing the
file descriptor

When using the
file descriptor

Optional

At linking LIB COBOL85 install
directory.
Directory name
of the file to be
combined when
linking

When linking Required

TMP Working
directory name to
be used at linking

When linking Required

At execution BSORT_TMPDIR Working
directory name

When using the
sort/merge
function

Optional

When using the
COBOL85 FILE
UTILITY

Optional

MEFTDIR Directory name
of window
information file
and printer
information file

When using
screen and form
descriptors

Optional

TEMP Working
directory name

When using the
sort/merge
function

Required

When using the
COBOL85 FILE
UTILITY

Required

10 Chapter 1. Overview of COBOL85

When Using Screen and Form Descriptors (32)

SMED_SUFFIX=NONE

Specifying 'None' indicates there is no extension.

FORMLIB=E:\FORM

Specifies the storage location for screen and form descriptors.

When Using the File Descriptor (32)

FFD_SUFFIX = NONE

Specifying 'None' indicates there is no extension.

FILELIB = E:\FILE

Specifies the storage location for the file descriptor.

Related Products

COBOL85 supports the following products.

Table 3. Related products

Name of Product Function
FORM Design screen and form layouts
Power FORM Design form layouts
FORM overlay option Design overlay pattern descriptors
FORM RTS Process input/output of screens and forms

An overview of each product is given below.

FORM and Power FORM

FORM designs screens and forms to be displayed and printed by
the COBOL program. Use FORM interactively to design the
layout of screens and forms.

Chapter 1. Overview of COBOL85 11

Power FORM designs the forms to be printed by the COBOL
program. Use Power FORM interactively to design the layout of
forms.

FORM Overlay Option

The FORM overlay option is a FORM product for designing the
overlay pattern to be printed by a COBOL program. You can
interactively design the layout of the overlay pattern.

FORM RTS

FORM RTS (sometimes referred to as MeFt) is used implicitly
when a program that reads and writes screens and forms is
executed. FORM RTS edits the format after receiving a screen or
form I-O request from the program.

12 Chapter 1. Overview of COBOL85

Developing a Program

The standard procedure for developing a program using P-
STAFF is explained in the following figure.

Figure 2. Developing a program with P-STAFF

1) Describe the COBOL source program.

2) Activate P-STAFF.

3) Edit the program after P-STAFF has been activated. ((16):
PowerFRAMEVIEW editor/(32): P-STAFF editor)

4) Execute WINCOB to compile the program. Refer to Chapter
3, “Compiling Programs.”

5) Use the error search function to correct a COBOL statement
where a compile error has occurred. Refer to “Correcting a
Compile Error” in Chapter 3.

Chapter 1. Overview of COBOL85 13

6) Execute WINLINK to link a program. Refer to Chapter 4,
“Linking Programs.”

7) Execute WINEXEC to execute a program. Refer to Chapter 5,
“Executing Programs.”

8) When the program does not execute as expected, or when the
unit test is being executed on a program (16) , debug a
program with the interactive debugger. Refer to the “Fujitsu
COBOL Debugging Guide” for more details.

9) When an application consists of several programs, use the
project management function for developing and maintaining
the application. Refer to Chapter 6, “Project Management
Function.”

10) When a program contained within a project-managed
application has been corrected, re-create the application. In
this case, execute the rebuild command. Refer to Chapter 6,
“Project Management Function.”

11) To process a COBOL file, execute the COBOL85 FILE
UTILITY. Refer to “COBOL85 FILE UTILITY” in Chapter 7.

COMPILE and LINK can be done without relying on P-STAFF.
Refer to “Using Commands to Compile,” in Chapter 3, “Using
Commands to Link,” in Chapter 4, and Appendix J, “Command
Formats.”

14 Chapter 1. Overview of COBOL85

Chapter 2. Creating and Editing
a Program

This chapter explains how to create and edit a program, how to
create library text and the program format, and describes
compiler directing statements.

16 Chapter 2. Creating and Editing a Program

Creating the Program

You create COBOL source programs and library text with
editors. This section explains how to create the COBOL source
program and library text.

Creating and Editing a COBOL Source Program

Simply, you create a COBOL source program by:

• Activating the editor

• Creating and entering text

• Storing the program

Activating the Editor

To display the edit screen, activate the editor.

Creating and Editing the Program

You format COBOL source programs using the COBOL reference
format. Enter the line number, COBOL statement and procedure-
name in the positions stipulated in the reference format.

Chapter 2. Creating and Editing a Program 17

Enter the line number, COBOL statement, and procedure
identifier in the edit screen, as shown in the following example.

 (1) (2)(3) (4)

Column position 12345678901234567890
000001 IDENTIFICATION DIVISION. (5)
000002 PROGRAM-ID. PROG1.

:
:

000012 01 A PIC X(5) VALUE "AB D". (6)
:
:

000021 DISPLAY A.

(1) Sequence number area (columns 1 to 6)
Specify the line number in the sequence number area. The
line number can be omitted.

(2) Indicator area (column 7)
Use the indicator area when continuing a line or to change a
line to a comment line. In all other cases, be sure to enter a
space.

(3) Area A (columns 8 to 11)
Normally, COBOL divisions, sections, paragraphs and end
program headers are described in this area. Data items whose
level-number is 77 or 01 are also described in this area.

(4) Area B (column 12 and on)
Normally, COBOL statements, comment-entries and data
items whose level-number is not 77 or 01 are described in this
area.

(5) Line feed character (end of line)
Enter a line feed character at the end of each line.

(6) TAB character
A TAB character can be specified as the nonnumeric literal in
a COBOL source program. The TAB character takes up 1 byte
within the non-numeric literal.

18 Chapter 2. Creating and Editing a Program

Storing the Program and Quitting the Editor

After creating and editing the source program, store the program
in a file, then quit (exit) the editor. Normally, you affix the
extension COB or CBL to the name of the file.

When using Windows 95 or Windows NT, you can also use the
extension COBOL. Affixing the extension COB, CBL or COBOL
facilitates specification of the file name when compiling the
program.

Creating Library Text

You create library text, fetched by the COBOL source program
with COPY statements, in the same manner as you create
COBOL source programs. However, the reference format (fixed,
variable or free) for the library text does not have to be the same
as the format of the COBOL source program that fetches the
library text.

As with the COBOL source program, you specify compiler
options to set up the reference format for the library text.
However, when a single program fetches several library texts,
the reference formats for all the library texts must be identical.

Normally, append the extension CBL or COB to the name of the
file in which the library text is to be stored. When using
Windows 95 or Windows NT, the extension COBOL can be used.

Screen and form descriptors can use any method of reference
format.

Chapter 2. Creating and Editing a Program 19

Program Format

Each line in the COBOL source program is delimited with a line
feed character, in accordance with the rules governing the
reference format.

There are three types of reference formats: fixed, variable and
free. You specify the type with a compiler option before
compiling the program.

The line feed character that delimits each line is not regarded as
part of the line.

Fixed Format

In a fixed format, each line in the COBOL source program has a
fixed length of 80 bytes.

 (Column position)
 1 6 7 8 12 72 73 80
Sequence number area * Area A Area B **
* Indicator area
** Program identification number area

Variable Format

In a variable format, each line in the COBOL source program can
be up to 251 bytes long.

 (Column position)
 1 6 7 8 12 < 251
Sequence number area * Area A Area B
* Indicator area

20 Chapter 2. Creating and Editing a Program

Free Format

In a free format, you do not need to distinguish between the
sequence number area, the indicator area, Area A, Area B, or the
program identification number area. Each line can be up to 251
bytes long.

 (Column position)
 1 < 251

Compiler Directing Statement

A compiler directing statement indicates the compiler options.
Normally, compiler options are specified in the Compiler
Options dialog box of the WINCOB window that runs
compilation, but the options can also be defined within the
source program.

The description format for the compiler directing statement is
shown below.

@OPTIONS [compiler-option [,compiler-option]...]

• Enter "@OPTIONS" starting at column 8.

• Enter at least one space between "@OPTIONS" and the
compiler options.

• Each compiler option must be delimited by a comma.

• A compiler directing statement indicates the starting position
of each separately compiled program. The compiler options
specified in the compiler directing statement apply only to
the corresponding separately compiled programs in the
compiler directing statement.

Chapter 2. Creating and Editing a Program 21

For example:

000100 @OPTIONS MAIN, APOST
000200 IDENTIFICATION DIVISION.
 :
 :

Do not use a tab as a separator in an @OPTIONS compiler
directing statement.

The compiler option values that can be specified in the compiler
directing statement are restricted. For details, refer to Appendix
A, “Compiler Options.”

22 Chapter 2. Creating and Editing a Program

Chapter 3. Compiling Programs

This chapter explains how to compile programs, using the
sample programs provided as examples. It describes the
resources required for compilation, and gives a sample
compilation procedure. This chapter also explains how to correct
compile errors and use commands to run the compiler.

24 Chapter 3. Compiling Programs

Compiling Sample Programs

This section explains the steps required to compile the sample
programs located in the SAMPLES directory (in the directory
where the COBOL85 compiler is installed). Each sample file is
stored separately.

Windows 95 and Windows NT

In the following explanation, it is assumed the sample program
is stored in:

C:\FSC\PCOBOL32\SAMPLES\SAMPLE1\SAMPLE1.COB

Start PROGRAMMING-STAFF by clicking on Start, Programs,
Fujitsu COBOL and Programming-Staff 32.
The PROGRAMMING-STAFF (P-STAFF) window opens.

Select WINCOB [Compile] from the Tools menu in the P-STAFF
window. The WINCOB window opens.

Click on the Browse button, and navigate to the directory where
the sample program is stored. Alternatively, you can specify the
file name in the edit box by entering it directly.

Figure 3. The WINCOB window

Chapter 3. Compiling Programs 25

Click on the Options button of the WINCOB window. The
Compiler Options dialog box is displayed.

Figure 4. The Compiler Options dialog box

Click on the Add button. The (Add) Compiler Options dialog
box, containing a list of available options, is displayed.

Figure 5. The (Add) Compiler Options dialog box

26 Chapter 3. Compiling Programs

Select MAIN in the Compiler Options list box and click on the
Add button. The (Details) Compiler Option dialog box is
displayed. Note: The main program must be defined in order to
distinguish it from the subprograms.

Figure 6. The (Details) Compiler Option dialog box

Select Compile program as main program and click on the OK
button. The (Details) Compiler Options dialog box is redisplayed.

Since there are no more options to be added, click on the Cancel
button. The (Add) Compiler Options dialog box closes. The
Compiler Options dialog box is redisplayed.

Figure 7. The Compiler Options dialog box with MAIN specified

Verify that MAIN appears in the Compiler Options list box of the
Compiler Options dialog box, then click on the OK button. The

Chapter 3. Compiling Programs 27

Compiler Options dialog box closes and the WINCOB window is
displayed.

Click on the Compile button in the WINCOB window.
Compilation starts, and a window showing compilation progress
is displayed.

Figure 8. The compilation progress dialog box

28 Chapter 3. Compiling Programs

Compilation ends. Compiler messages are displayed in the P-
STAFF window.

Figure 9. The PROGRAMMING-STAFF window

Verify that compilation completed normally and then click on the
Cancel button in the WINCOB window. The WINCOB window
closes. Click on Exit in the File menu to close the P-STAFF
window.

Compilation of the sample program is now complete. Verify that
the object program (SAMPLE1.OBJ) was created in the same
directory (C:\FSC\PCOBOL32\SAMPLES\SAMPLE1 in this
example) as the directory where the sample program was stored.

If compilation does not complete normally, the program may not
have been installed properly. Verify that the program was
installed properly.

Chapter 3. Compiling Programs 29

Windows 3.1

In the following explanation, it is assumed the sample program
is stored in:

C:\FSC\PCOBOL16\SAMPLES\SAMPLE1\SAMPLE1.COB

Double-click on the PROGRAMMING-STAFF icon. The
PROGRAMMING-STAFF (P-STAFF) window opens.

Select WINCOB from the Utility menu in the P-STAFF window.
The WINCOB window opens.

Click on the Browse button, and navigate to the directory where
the sample program is stored. Alternatively, you can specify the
file name in the edit box by entering it directly.

Figure 10. The WINCOB window

Select Options in the WINCOB window. The Compiler Options
dialog box is displayed.

30 Chapter 3. Compiling Programs

Figure 11. The Compiler Options dialog box

Click on the Add button. The (Add) Compiler Options dialog
box, containing a list of available options, is displayed.

Figure 12. The (Add) Compiler Options Dialog Box

Select MAIN in the Compiler Options list box and click on the
Add button. The (Details) Compiler Option dialog box is
displayed.

Chapter 3. Compiling Programs 31

Figure 13. The (Details) Compiler Option dialog box

Select Compile program as main program and click on the OK
button. The (Details) Compiler Options dialog box is redisplayed.

Since there are no options to be added, click on the Exit button.
The (Details) Compiler Options dialog box closes. The Compiler
Options dialog box is redisplayed.

Figure 14. The Compiler Options dialog box with MAIN specified

Verify that MAIN appears in the Compiler Options list box of the
Compiler Options dialog box, then click on the OK button. The
Compiler Options dialog box closes and the WINCOB window is
displayed.

32 Chapter 3. Compiling Programs

Click on the Compile button in the WINCOB window.
Compilation starts, and a window showing compilation progress
is displayed.

Figure 15. The compilation progress window

Compilation ends. Compiler messages are displayed in the
PowerFRAMEVIEW Editor.

Chapter 3. Compiling Programs 33

Figure 16. The PowerFRAMEVIEW Editor

Verify that compilation completed normally and then select Exit
in the WINCOB window. The WINCOB window closes.

Compilation of the sample program is now complete. Verify that
the object program (SAMPLE1.OBJ) was created in the same
directory (C:\FSC\PCOBOL16\SAMPLES\SAMPLE1 in this
example) as the directory where the sample program was stored.

If compilation does not complete normally, the program may not
have been installed properly. Verify that the program was
installed properly.

34 Chapter 3. Compiling Programs

Resources Necessary for Compilation

This section explains the files used by the COBOL85 compiler
and the information that it produces.

Files Used by the COBOL85 Compiler

The COBOL85 compiler uses the following files:

Figure 17. Files used by the COBOL85 compiler

*1 A compile message is written in the editor when compilation terminates.

Chapter 3. Compiling Programs 35

The following table lists the files used by the COBOL85 compiler.

Table 4. Files used by the COBOL85 compiler

File Contents File Name Format I/O Condition Option
1 Source

programs
Any (Normally, use
the extension COB,
CBL or COBOL)

 I Required

2 Library text library-text-
name.CBL(*1)

 I Follow the
specification
method when
compiling a source
program that uses
the COPY statement
⇒ (*3)

 LIB

3 Screen and
form
descriptors

screen-and-form -
descriptor.PMD (*2)

 I Follow the
specification
method when
compiling a source
program that uses
screen and form
descriptors ⇒ (*4)

FORMLIB
FORMEXT

4 File descriptor file-descriptor.FFD
(*2)

 I Follow the
specification
method when
compiling a source
program that uses a
file descriptor ⇒
(*4)

FILELIB
FILEEXT

36 Chapter 3. Compiling Programs

Table 4. Files used by the COBOL85 compiler (cont.)

File Contents File Name Format I/O Condition Option
5 Character-

strings
indicating
compiler
options

DEFAULT.CBI or
Any name (Refer to
Appendix J)

 I When specifying
compiler options
 stored in a file
using the WINCOB
window or
COBOL32 command

 O When compiler
options are set up in
the Compiler
Options dialog box
for the WINCOB
window

6 Information
used by the
COBOL85
compiler

COBOL85.CBI I/O Created in the
directory which
COBOL85 was
installed

7 Object
program

source-file-
name.OBJ

 O When the source
program
compilation
completes normally

 OBJECT

8 Debugging
information

source-file-
name.SVD

 O When the compiler
option TEST is
specified

 TEST

9 Compiler
listings

source-file-name.
LST

 O When compiler
listings is output

 PRINT

10 Compile
message

Is displayed

Notes:

(*1) The extension COB or COBOL may be used instead of CBL.
The system searches the extension for the file to be compiled in
the following order:

• CBL

• COB

• COBOL (32)

Chapter 3. Compiling Programs 37

(*2) Each extension can be changed to any character string by
using the compiler option (FORMEXT/FILEEXT) or environment
variable (SMED_SUFFIX/FFD_SUFFIX).

Refer to “Setting Up Environment Variables” in Chapter 1 and
Appendix A, “Compiler Options.”

 (*3) When COPY statements have been entered without IN/OF
in the COBOL source program either:

• Specify the directory of the library text file in compiler option
LIB.

• Store the library text file in the current directory. (32)
When compiling from the WINCOB window, the current
directory is the directory where the COBOL source program
is stored.

• Store the library text files in the same directory as the source
file. (16)

When COPY statements have been entered with IN/OF in the
COBOL source program:

• Associate the storage directory of the library text file with the
library specified by IN/OF. Failure to create an association
with the library causes a compile error to occur during
compilation.

(*4) Specify the directory of the file (screen and form
descriptors/file descriptor) in the compiler option
(FORMLIB/FILELIB).

• Specify the directory of the file (screen and form
descriptors/file descriptor) in the environment variable
(FORMLIB/FILELIB). (32)

• Store the file (screen and form descriptors/file descriptor) in
the current directory. (32)
When compiling from the WINCOB window, the current

38 Chapter 3. Compiling Programs

directory is the directory where the COBOL source program
is stored.

• Store the file (screen and form descriptors/file descriptor) in
the same directory as the source file. (16)

Information Provided by the COBOL85 Compiler

The COBOL85 compiler reports program compilation results as a
diagnostic message. The diagnostic message appears in the
window when compilation terminates.

To store the message in a file, either save the displayed message
as a file or specify the compiler option PRINT before compiling.

Specifying the compiler option MESSAGE writes option and
statistical information listings for separately compiled programs.
These lists indicate the compiler options and provide information
on compiled programs. These lists are also called compiler
listings.

The formats of the compiler listings written when compiler
option PRINT and MESSAGE specified are shown below.

Option Information Listing

The numbers in parentheses () correspond to the notes that
follow these examples.

COBOL85 V30L10 TUE JAN 30 19:00:45 1996 0001
 (1) (2)

 ** OPTIONS SPECIFIED **
MAIN
MESSAGE
TERM (3)
** OPTIONS ESTABLISHED **
ALPHAL LINECOUNT(60) SDS (4)
BINARY(WORD, MLBON) LINESIZE(136) NOSOURCE
: : :
: : :

Chapter 3. Compiling Programs 39

Diagnostic Message Listing

COBOL85 V30L10 program-name TUE JAN 30 19:00:45 1996 0002 (5)
 ** DIAGNOSTIC MESSAGE ** (program-name)
 C:\TEST.COB 4: JMN2503I-S USER WORD 'A' IS UNDEFINED. (6)

Compile Unit Statistical Information Listing

COBOL85 V30L10 program-name TUE JAN 30 19:00:45 1996 0003
 ** STATISTICS **
 FILE NAME = C:\TEST. COB
 DATE AND TIME = TUE JAN 30 1996 19:00:45
 SOURCE STATEMENTS = 5 RECORDS (7)
 PROGRAM SIZE (CODE) = 0 BYTES (8)
 CONTROL LEVEL = 1 LEVEL (9)
 CPU TIME = 4.72 sec. (10)
 HIGHEST SEVERITY CODE = S (11)

Notes:

(1) Indicates the compilation date.

(2) Indicates the page number.

(3) Indicates the compiler options specified by the user.

(4) Indicates a list of compiler options established by the
COBOL85 compiler.

(5) Indicates the program name.

(6) Indicates the diagnostic message output by the COBOL85
compiler. For details on the format of the diagnostic message,
refer to Appendix F, “Message Lists.”

(7) Indicates the number of records in the source program input
by the COBOL85 compiler. When a library has been fetched,
the number of fetched records is included.

(8) Indicates the size of the object program. When the
compilation operation was completed normally and the
object program has been output, the DATA size is also
output.

40 Chapter 3. Compiling Programs

(9) Indicates the level of the compiler used.

(10) Indicates the time required for compilation.

(11) Indicates the highest severity code among output diagnostic
message codes.

Compiling a COBOL Source Program

There are two methods to compile a COBOL source program.
One method involves running WINCOB commands from a
window, and the other method involves running the compiler
from the command line. This section explains the procedure for
compiling the program using the WINCOB window.

For details on how to compile the program using the commands,
see “Using Commands to Compile.”

A source program containing several compilation units within
one file cannot be compiled.

Compiling a Single Source File

To compile files:

1. Activate the WINCOB window. See “Activating the WINCOB
Window.”

2. Specify the name of the source file to be compiled in the File
Name edit box. See “Specifying a File Name” (for single
compilation).

3. Establish the compiler options. See “Setting Up Compiler
Options.” Specify the name of the source file before
establishing the compiler options.

4. Establish the library name. See “Setting a Library Name.”

Chapter 3. Compiling Programs 41

5. Start compilation. See “Starting and Quitting Compilation.”

6. Correct any compile errors. When compilation terminates, a
compile message appears in the window of P-STAFF editor.
When a compile error is detected, correct the program by
using the error search function, then restart compilation. See
“Correcting a Compile Error.”

7. Quit compilation. See “Starting and Quitting Compilation.”

• To continue compilation, close the message and repeat the
operation from Step 2.

• To quit compilation, click on the Cancel button (32) or select
Exit (16) in the WINCOB window.

When a compile ends normally, an object program is created.
The object program has to be linked before it can be executed.
Linking is explained in Chapter 4, “Linking Programs.”

Compiling Several Source Files

To compile several files consecutively with WINCOB:

1. Activate the WINCOB window. See “Activating the WINCOB
Window.”

2. Specify continuous compilation. See “Specifying Continuous
Compilation.”

3. Specify the names of the source files to be compiled in the
WINCOB (Continuous Compilation mode) List box. See
“Specifying a File Name” (for continuous compilation).

4. Establish the compiler options. See “Setting Up Compiler
Options.” Select and establish compiler options and a library
name separately for each directory of files selected from the
list box.

42 Chapter 3. Compiling Programs

5. Establishing a library name. See “Setting a Library Name.”
Select and establish compiler options and a library name
separately for each directory of files selected from the list box.
When running continuous compilation, the same compiler
options must be specified for source files in the same
directory. To specify different compiler options, enter a
compiler directing statement within the COBOL source
program. Refer to “Compiler Directing Statement” in Chapter
2.

6. Specify the main program. See “Specifying the Main
Program.” The options set up at this step have priority over
options specified at the dialog box even if MAIN was
specified.

7. Start compilation. When compilation of one file ends, start
compilation of the next file. See “Starting and Quitting
Compilation.”

8. Correct any compile errors. When compilation ends, a
compile message appears in the window. When a compile
error is detected, a compile message for all files appears in
the window after continuous compilation ends. Correct the
program by using the error search function, then restart
compilation. See “Correcting a Compile Error.”

9. Quit compilation. See ‘Starting and Quitting Compilation.”

• To continue compilation, close the message and repeat
compilation from Step 3.

• To quit compilation, click on the Cancel button (32) or select
Exit (16) in the WINCOB window.

If no errors are found in the COBOL source program and
compilation ends normally, an object program is created.

The object program cannot be run as it is. The object program
must be linked to make it executable.When compilation ends,

Chapter 3. Compiling Programs 43

link the program. For details on linking, refer to Chapter 4,
“Linking Programs.”

WINCOB Window

The WINCOB window runs compilation. This section explains
the WINCOB window. For further details about using the
window, refer to the online help.

Activating the WINCOB Window (32)

The WINCOB window can be started by either:

• Selecting WINCOB from the Tools menu of the P-STAFF
window

or

• Executing “WINCOB.EXE”.

The WINCOB (Standard Compilation mode) window is
displayed.

Figure 18. The WINCOB window in Standard Compilation mode

The WINCOB window contains the following elements:

Mode

44 Chapter 3. Compiling Programs

Specify whether a single program (standard) or multiple
programs (continuous) are to be compiled.

Help

Access the online help.

Source file edit box

Specify the COBOL source file to be compiled.

Browse button

Click to browse directories to select a COBOL source file.

OK button

Click to start compilation.

Cancel button

Click to close the WINCOB window.

Options button

Click to specify compile options.

Compile button

Click to start compilation.

Specify the COBOL source program to be compiled by either
entering it in the source file edit box, or by using the Browse
button to select a file.

Specifying Continuous Compilation

To compile more than one program, select Continuous
compilation from the Mode menu in the WINCOB window. The
WINCOB window expands to include the continuous
compilation options. Specify the file names to compile in the
WINCOB (Continuous Compilation mode) window.

Chapter 3. Compiling Programs 45

Figure 19. The WINCOB window in Continuous Compilation mode

The WINCOB (Continuous Compilation mode) window contains
the following elements:

Mode

Specify whether a single program (standard) or multiple
programs (continuous) are to be compiled.

Help

Access the online help.

Source file edit box

Specify the COBOL source file to be added to the List.

List (list box)

List of COBOL source files to be compiled.

Browse button

Click to browse directories to select a COBOL source file.

Add button

Click to add the Source File to the List.

46 Chapter 3. Compiling Programs

Delete button

Click to remove the selected file(s) from the List.

Main button

Click to indicate that the selected file is a main program.

Sub button

Click to indicate that the selected file is a sub program.

OK button

Click to start compilation.

Cancel button

Click to close the WINCOB window.

Options button

Click to specify compile options.

Compile button

Click to start compilation.

Specifying a File Name

The method of specifying a file name differs for single
compilation and continuous compilation. Both methods are
explained below.

• To specify the file name to be used for standard (single)
compilation:

Specify the name of the file to be compiled in the Source File
edit box either by entering it directly from the keyboard or
selecting it using the Browse button.

Chapter 3. Compiling Programs 47

• To specify the file names to be used for continuous (multiple)
compilation:

− As with single compilation, specify the name of each file to
be compiled in the Source File edit box.

− Click on the Add button.

Setting Compiler Options

You specify compiler options by selecting the Options button
and setting the options in the displayed Compiler Options dialog
box. See “Compiler Options Dialog Box.”

Specify the source file name before setting up the compiler
options.

Specifying the Main Program

To specify a main program, the compiler option MAIN must be
specified.

There are levels of priority for the compiler option MAIN,
depending on whether the option was selected for single or
continuous compilation.

The priority for compiler option MAIN is as follows:

1. Specified by a compiler directing statement

2. Specified by clicking on the Main button

3. Specified in the Compiler Options dialog box

To specify the main program for single compilation, specify the
compiler option MAIN from the (Add) Compiler Options dialog
box.

48 Chapter 3. Compiling Programs

To specify the main program for continuous compilation, select
the Main button in the WINCOB (Continuous Compilation
mode) window:

1. Select the file name to be compiled as the main program from
the Compilation list box. Multiple files can be selected.

2. Click on the Main button. The small icon next to the selected
file turns red.

The setting of Main or Subprogram in the WINCOB (Continuous
Compilation mode) window takes priority over the setting in the
Options dialog box.

When selecting files from the compilation list, failure to click on
the Main button causes the selected file name to be regarded as a
subprogram. Be sure to set up the file as the main program by
clicking on the Main button.

Chapter 3. Compiling Programs 49

Starting and Quitting Compilation

To start compilation, click on the Compile button. Compilation
starts, and a window showing compilation progress is displayed.

Figure 20. The compilation progress window

Note: The countdown begins at number 9.

Click on the Quit button to interrupt the compile.

When compilation ends, a compile message appears in the
window of P-STAFF editor. If a compile error is detected, correct
the program by using the error search function. See “Correcting a
Compile Error.”

To quit compilation, click on the Cancel button to close the
WINCOB window.

50 Chapter 3. Compiling Programs

Compiler Options Dialog Box

This section explains how to set the compiler options and library
names. You must define the source file name to be compiled in
the WINCOB window before setting the compiler options.

To set compiler options, click on the Options button in the
WINCOB window to open the Compiler Options dialog box,
then set the options. When necessary, open the Library Names
dialog box from the Compiler Options dialog box and define the
library names.

For details on the compiler options that can be set, refer to
Appendix A, “Compiler Options.” For additional details on how
to use the windows, refer to the online help.

Setting Compiler Options

Set the compiler options from the Compiler Options list box or
the Other Compiler Options edit box.

When setting compiler options in the Compiler Options list box,
use the Add, Change and Delete buttons. When setting compiler
options in the Other Compiler Options edit box, enter the
compiler options as character strings directly from the keyboard.

Chapter 3. Compiling Programs 51

Figure 21. The Compiler Options dialog box

The Compiler Options dialog box contains the following
elements:

Option File display field

Displays the file in which option settings will be saved.

Compiler Options list box

Displays compiler options selected by the Add button.

Add button

Click to select from a list of compiler options.

Change button

Click to change the setting of the selected compiler option(s).

Delete button

Click to remove the select compiler option(s) from the list
box.

Other Compiler Options edit box

Allows the compile options to be keyed in directly.

52 Chapter 3. Compiling Programs

OK button

Click to confirm the compiler option settings or changes.

Cancel button

Click to cancel any compiler option settings or changes and
return to the state before the dialog box was opened.

Library Names button

Click to specify the library text files.

Help button

Click to access the online help.

Previously specified compiler options, as well as those you add,
are displayed in the compiler options list field.

Adding a Compiler Option

To set a compiler option that is not shown in the Compiler
Options list box:

1. Click on the Add button. The (Add) Compiler Options dialog
box appears.

2. Select the compiler option to be added from the Compiler
Options list box and click on the Add button. The (Details)
Compiler Option dialog box then appears.

3. Specify the details to be set for the compiler option. The
details in the (Details) Compiler Option dialog box differ
depending on the compiler option. Refer to the online help or
“Compiler Options” in Appendix A for more information.

4. Click on the OK button in the (Details) Compiler Option
dialog box. The (Details) Compiler Options dialog box closes
and the (Add) Compiler Options dialog box is redisplayed.
To delete a compiler option setup, click on the Cancel button.

Chapter 3. Compiling Programs 53

5. To continue adding compiler options, repeat the procedure
from Step 2.

6. When all the compiler options to be added are set, click on
the Cancel button. The (Add) Compiler Options dialog box
closes and the Compiler Options dialog box is displayed.

7. The compiler options which were set are listed in the
Compiler Options list box in the Compiler Options dialog
box.

Changing a Compiler Option

To change the details of a compiler option listed in the Compiler
Options list box:

1. Select the compiler option whose setup details are to be
changed from the Compiler Options list box, then click on the
Change button. The (Details) Compiler Options dialog box is
displayed.

2. Change the settings.

3. After all modifications have been made, click on the OK
button. To cancel the change to the compiler setup, click on
the Cancel button. The Compiler Options dialog closes.

4. The changed details of the compiler option are listed in the
Compiler Options list box in the Compiler Options dialog
box.

54 Chapter 3. Compiling Programs

Deleting a Compiler Option

To delete a compiler option that appears in the Compiler Options
list box:

1. Select the compiler option to be deleted from the Compiler
Options list box

2. Click on the Delete button.

Setting a Library Name

When compiling a COBOL source program containing COPY
statements that specify library names, use the Library Names
button to associate the library names with the directories where
the library files are kept.

When compiling a COBOL source program containing COPY
statements that do not specify library names, specify the
directory where the libraries are kept in the compiler option LIB.

To associate a library name with a directory, click on the Library
Names button in the Compiler Options dialog box, then set the
library details in the Library Names dialog box.

Chapter 3. Compiling Programs 55

Figure 22. The Library Name dialog box

The Library Name dialog box contains the following elements:

Library Name list box

Displays the library text files and associated directories that
have already been specified.

Add button

Click to enter a library name and associated directory.

Change button

Click to change the directory associated with the selected
library.

Delete button

Click to remove the selected library from the list box.

OK button

Click to confirm the library settings or changes.

Cancel button

Click to cancel any library settings or changes and return to
the state before the dialog box was opened.

Help button

Click to access the online help.

56 Chapter 3. Compiling Programs

Adding a Library Name

To specify a library name that does not appear in the Library
Name list box:

1. Click on the Add button. The Add Library Name dialog box
is displayed.

2. Specify the library name entered in the COPY statement of
the COBOL source program and the directory name of the
library storage file.

Figure 23. The Add Library Name dialog box

3. Click on the OK button. To cancel the specified details, click
on the Cancel button. The Add Library Name dialog closes.
Closing the dialog box without clicking on the OK button
looses the specified details.

4. The specified library name, and associated directory, appears
in the Library Names list box in the Library Name dialog box.

Chapter 3. Compiling Programs 57

Changing a Library Name

To change the directory associated with a library displayed in the
Library Name list box:

1. Select the library, for which the associated directory is to be
changed, from the Library Name list box, then click on the
Change button. The Modify Library’s Directory dialog box is
displayed.

Figure 24. The Modify Library’s Directory dialog box

2. Change the directory name.

3. After changing the directory name, click on the OK button.
The Modify Library’s Directory dialog box closes.

4. The new directory name is displayed in the Library Name list
box in the Library Name dialog box.

Deleting a Library Name

To delete a library name displayed in the Library Name list box:

1. Select the library name to be deleted from the Library Name
list box.

2. Click on the Delete button.

58 Chapter 3. Compiling Programs

Quitting Library Name Setup

When setup of a library name is completed, click on the OK
button in the Library Name dialog box. The Compiler Options
dialog box is redisplayed.

Storing Setup Options

When setup of compiler options and library names are
completed, click on the OK button in the Compiler Options
dialog box to save the details in the options file.

The options file creates the file name "DEFAULT.CBI" in the
same directory as the source file specified in the WINCOB
window. If the file "DEFAULT.CBI" already exists, the file is
updated with the new details.

To cancel setup before new options have been stored, click on the
Cancel button, or close the dialog without clicking on the OK
button.

When running continuous compilation, the same compiler
options must be specified for source files being stored in the
same directory. To specify different compiler options, enter a
compiling directive statement within the COBOL source
program. Refer to “Compiler Directing Statement” in Chapter 2.

Chapter 3. Compiling Programs 59

Correcting a Compile Error

If a compile error is detected after compilation is activated from
the WINCOB window, a compile message (diagnostic message)
is displayed in the relevant window of the P-STAFF editor when
compilation terminates.

The error search function causes the display to tag-jump from the
diagnostic message displayed in the message window to the line
where the compile error was detected in the edit window of the
COBOL source program.

The edit window of the COBOL source program automatically
opens at the first tag-jump, so you do not have to activate the
editor beforehand.

Using the error search function automates the search for faulty
statements, making program correction highly efficient.

Compile Messages

When compilation terminates, a compile message appears in the
window of the P-STAFF editor (32) or the WINMSG window
(16). To save the compile message as a file, save the file from the
window.

When compiler option MESSAGE has been specified, the compile
message consists of the option information listing, the diagnostic
message listing, and the compile unit statistical listing.

60 Chapter 3. Compiling Programs

Using Error Search

This section explains how to use error search and the P-STAFF
editor.

Error Search Procedures

1. Compile from the WINCOB or P-STAFF editor window.

2. When compilation has ended, a message appears on the P-
STAFF editor. If the message already exists, open the P-
STAFF editor to display the message.

3. Move the cursor to the line of the diagnostic message and
press the F11 key or select Tag Jump from the Search menu.
The COBOL source program is displayed, and the cursor
moves to the line causing the message.

Figure 25. The P-STAFF editor

Chapter 3. Compiling Programs 61

4. Correct the program in the edit window. To switch from the
edit window to the message window, press the Shift and F11
keys or select Back Tag Jump from the Search menu.

The error search function is effective only for compile messages.
This function cannot be activated from messages written to the
compiler listings (when PRINT has been specified as the
compiler option).

Error search cannot be used when the compiler option NUMBER
has been specified.

If the total length (underlined portion) of the file name, spaces
and line numbers in the diagnostic message exceeds 63 bytes, the
first part of the file name is truncated and the message is written
as 63 bytes. This means error search cannot be used.

For example:

C:\TEST.COB 4: JMN25031-S USER WORD "A" IS
UNDEFINED.

Using the P-STAFF Editor

The error search function displays the COBOL85 P-STAFF edit
window of the COBOL source program.

This section describes the functions of each item in the P-STAFF
editor menu bar. The menu bar used in the P-STAFF editor has
three items: File, Edit and Find. Refer to the online help for
details.

 [File]

Opens, saves and closes a file, specifies the font, and sets
compiler options and runs compilation (valid only for currently
open files).

62 Chapter 3. Compiling Programs

[Edit]

Allows you to cut and paste, copy and delete, specify a range,
and control the line number.

[Find]

Finds and replaces, moves the cursor, and controls tag-jump and
back tag-jump.

When the line number is renumbered, the new number
overwrites any characters in the first six columns.

Alternative Editors

You can direct P-STAFF to use an editor other than the P-STAFF
editor. To do this:

1. From the File menu, click Customize Editor and click Set
from the cascading menu. The Customize Editor dialog box is
displayed.

2. Enter the command line of the editor to be used and click the
OK button. Note: All open P-STAFF editor windows will be
closed when the customize editor function is selected. The
reason for this is to provide a clean break from using the P-
STAFF editor to using the newly configured editor.

3. To return to using the P-STAFF editor, click on Customize
Editor in the File menu and click on Reset from the cascading
menu.

Compiler messages created by the Project Make function or by
compiling using WINCOB are displayed using the editor
specified with the Customize Editor function.

Note: When other editors are selected, the error message search
function of P-STAFF cannot be used. The presence of the tag-
jump function depends on the function of the selected editor.

Chapter 3. Compiling Programs 63

Using Commands to Compile

COBOL32 Commands

With COBOL32 commands, you can compile from the command
prompt.

Specification Example and Output Format

COBOL32 commands return compilation information such as the
results of compilation and diagnostic messages to the command
prompt screen.

For details on the format of COBOL32 commands and the
available options, refer to Appendix J, “Command Formats.”

The following example shows how to compile with a COBOL32
command, and the output.

General Format

A compile end message is normally written if compile option
MESSAGE has not been specified. If a compile error occurs, the
corresponding diagnostic message is generated.

Figure 26. The compile end message

64 Chapter 3. Compiling Programs

Output Information

When the compiler option MESSAGE has been specified, the
option information listing and compile unit statistical
information listing are written. If a compile error occurs, the
corresponding diagnostic message is written.

Figure 27. Listings when the compiler option MESSAGE is specified

Differences in Compilation Run from WINCOB

Compilation operations run by COBOL32 command differ from
compilation operations run from WINCOB in the following
ways:

• No compile progress screen is displayed when compilation is
run from COBOL32 commands.

• To interrupt compilation, follow the same method as for DOS
commands.

Chapter 3. Compiling Programs 65

Return Codes for COBOL32 Commands

The return codes for COBOL32 commands are set according to
the highest severity code when the program is compiled. The
relation between the highest severity code and the return code is
shown below.

Highest Severity
Code

 Return
Code

 I
 0

 W
 E 1
 S 2
 U 3

66 Chapter 3. Compiling Programs

Chapter 4. Linking Programs

This chapter describes the resources required for linking,
program structure, linkage procedures, how to use windows for
linking, linking with link commands, and link messages.

68 Chapter 4. Linking Programs

Linking Sample Programs

Compilation creates an object program that must be linked before
it can be executed.

Windows 95 and Windows NT

This section shows how to use WINLINK to link the Sample 1
program. This section assumes the file containing the object
program to be:

C:\FSC\PCOBOL32\SAMPLES\SAMPLE1\SAMPLE1.OBJ

To perform a link:

• Select WINLINK [Link] from the P-STAFF Tools menu.
The WINLINK [Linking Files] window appears.

Chapter 4. Linking Programs 69

Figure 28. The WINLINK [Linking Files] window

• Select EXE in the Type box.

• Use the Browse button to locate and select the object file to
link in the Link File edit box.

• Click on the Add button. The object name is displayed in the
list box. The executable program to be created is displayed in
the Target edit box.

• Click on the Link button. The system displays a command
prompt screen showing the linker messages.

• The system completes linking. The command prompt
window displays a message stating that the system has
completed linking. Make sure that linking has completed
successfully, then close the command prompt window.

70 Chapter 4. Linking Programs

Windows 3.1

This section shows how to use WINLINK to link the Sample 1
program. This section assumes the file containing the object
program to be:

C:\FSC\PCOBOL16\SAMPLES\SAMPLE1\SAMPLE1.OBJ

The section describes how to link the example dynamically.

1. Select WINLINK from the Utilities menu in the P-STAFF
window. The WINLINK [Linking Files] window appears.

Figure 29. The WINLINK [Linking Files] window

2. Set the required information.

Select EXE in the Target box. Enter the object file.

Click on the Add button. The object name is displayed in the
list box. The executable program to be created by linking is
displayed.

Enter the module definition file. Click on the Add button.

Chapter 4. Linking Programs 71

3. Click on the Build button in the WINLINK [Linking Files]
window.

A link message is displayed in the message window.

4. The system completes linking.

A message stating that the system completed linking is
displayed in the message box. Make sure that linking has
completed successfully, then close the message box.

This completes linking of the sample program. Make sure that an
executable program (SAMPLE1.EXE) is created in the directory
containing the sample program (in this example,
C:\FSC\PCOBOL16\SAMPLES\SAMPLE1).

Resources Required for Linking

Object programs compiled from COBOL source programs are
usually linked using WINLINK. WINLINK allows you to create
libraries, import libraries, dynamic link libraries (DLLs), and
executable files through simple screen operations. This section
briefly describes the files required for linking.

You must take into account the type of link required and the
program structure. See “Linkage Types and Program Structure.”

Before linking using WINLINK, the work disk drive must be set
in environment variable TMP.

This following examples illustrate the files used and created by
WINLINK.

72 Chapter 4. Linking Programs

Figure 30. Building COBOL libraries with WINLINK

Figure 31. Linking files (creating an Import Library and DLL) with WINLINK

Chapter 4. Linking Programs 73

Figure 32. Linking files (creating an .EXE) with WINLINK

Notes on the above figures:

*1 The module definition file is generated automatically and is
not specified in the WINLINK window.

*2 Standard libraries can be built using the WINLINK Building
COBOL Libraries function.

*3 Import libraries are required for the dynamic link structure.
The DLL/Import library should be made beforehand.

74 Chapter 4. Linking Programs

The following table describes the files used by WINLINK.

Table 5. Files used by WINLINK

File Contents File Name
Format

I/O Condition to Use or
Create

1 Object file Source-file-
name. OBJ

I Use the object program
compiled from a COBOL
source program

2 Module
definition
statement
(Required for
subprograms)

Optional-
name. DEF

I [16] Required to create an
import library, export file,
or DLL
[32] Required to create an
import library, DLL or
EXE

 O Created automatically if
omitted in the WINLINK
window

3 Standard
library (Object
code library)

Optional-
name. LIB

 I Define when required to
create a DLL or executable
file

O Created by the WINLINK
Building COBOL Libraries
function.

Chapter 4. Linking Programs 75

Table 5. Files used by WINLINK (cont.)

File
Contents

File Name
Format

I/O Condition to Use or Create

4 Import
library

Optional-
name. LIB

 I Specify to create an
executable file having the
dynamic link structure.

 O [16] Created when DLL is
selected in WINLINK
[Linking Files] and checked
by selecting Building
Import Libraries.
[32] Created automatically
when DLL is selected in
WINLINK Linking Files

5 Dynamic
link library
(DLL)

Object-file-
name.DLL
or Optional-
name. DLL

 O Created when linking has
completed successfully.

6 Executable
program

Object-file-
name.EXE
or Optional-
name. EXE

 O Created when linking has
completed successfully.

Executable Files

The executable files created are Microsoft Windows applications
and will run in the following environments:

• Microsoft Windows 95 operating system

• Microsoft Windows NT Workstation operating system
Version 3.51(or above) , Microsoft Windows NT Server
Network operating system Version 3.51(or above).

• Microsoft Windows 3.1 operating system

76 Chapter 4. Linking Programs

DLLs

DLLs are executable modules containing functions called to
perform any processing from Windows applications. A DLL is
linked with an application at run time, instead of during linking.

A DLL allows multiple applications to use the same library. In a
multitasking environment such as Windows, DLLs are very
efficient because multiple applications can share the same DLL.

Import Library

The import library contains information used to set a dynamic
link between an active application and a DLL during application
execution. This library is required to create an executable file
having a dynamic link structure.

The system copies information indicating where a required
library is stored from the import library to the executable
program. In other words, the import library provides an interface
between the application and the DLL.

Module Definition File

The contents of the module definition file depend on whether
you are using Windows 95 and Windows NT or Windows 3.1.

Module Definition File Contents (32)

The module definition file is required to create the import library.
Create the file with a text editor.

Chapter 4. Linking Programs 77

Even if a module definition file is not specified in the WINLINK
[Linking Files] window, it is created automatically during
linking.

The module definition file is used indirectly to create an
executable file having a dynamic link structure, because the
import library created from information in the file must be
specified.

The module definition statements in the module definition file
define the contents of the DLL and requirements to the system.

The following table lists the module definition statements that
can be used.

Table 6. Module definition statements (32)

Module
Statement

Description

NAME Defines the module name of an application.
LIBRARY Specifies the module name of a dynamic link library.
DESCRIPTION Describes the modules briefly.
STACKSIZE Specifies the stack size in bytes.
SECTIONS Sets the attribute of a specific section.
EXPORTS Specifies the PROGRAM-ID and ENTRY names.
VERSION Embeds the version number.

The module definition file must contain the following statements:

• LIBRARY

• EXPORTS

When the file is created automatically, the specified object name
is set as EXPORTS.

78 Chapter 4. Linking Programs

The following figure shows the contents of the module definition
file created from the WINLINK [Linking Files] window.

Figure 33. A module definition file created by WINLINK

Module Definition File Contents (16)

The module definition file used under Windows 3.1 is required
for linking. Create the file with a text editor.

Even if no module definition file is specified in the WINLINK
[Linking Files] window, it is created automatically during
linking.

The module definition statements in the module definition file
define the contents of the application or DLL and requirements
to the system.

Chapter 4. Linking Programs 79

The following table lists the module definition statements that
can be used.

Table 7. Module definition statements (16)

Module
Statement

Description

NAME Defines the module name of an application.
LIBRARY Specifies the module name of a dynamic link library.
DESCRIPTION Describes the modules briefly.
CODE Defines the attribute of the code segment.
DATA Defines the attribute of the data segment.
STACKSIZE Specifies the local stack size in bytes.
STUB Specifies the MS-DOS executable file used to display an

alarm message when any application is ran outside the
Windows environment.

EXPORTS Specifies the module functions that will be called by
Windows or other applications.

IMPORTS Specifies functions of other applications that will be
called from this module.

HEAPSIZE Specifies the local heap size in bytes.
PROTMODE Sets the executable program to run in Windows

protected mode only (standard or 386 extended).
EXETYPE
WINDOWS 3.0

Sets applications to run under the Windows
environment. This statement must not be omitted

Different formats are used for the module definition file
depending on whether you create an application or DLL.

The following examples show the module definition files created
in the WINLINK [Linking Files] window for applications and
DLL. Information in the module definition file was set with the
module definition file templates.

80 Chapter 4. Linking Programs

Module Definition File for Applications

 NAME 'SAMPLE1' (1)
 EXETYPE WINDOWS 3.1 (2)
 STUB 'COBSTUB'
 PROTMODE (3)
 DATA MULTIPLE MOVEABLE
 PRELOAD
 CODE MOVEABLE
 PRELOAD DISCARDABLE
 HEAPSIZE 1024
 STACKSIZE 8192 (4)

(1) Set the program name.

(2) Set the application to run under Windows.

(3) Set protected mode.

(4) Set required sizes.

Module Definition File for DLLs

LIBRARY 'INSATSU' (1)
EXETYPE WINDOWS 3.1
STUB 'COBSTUB' (2)
PROTMODE
DATA SINGLE MOVEABLE PRELOAD
CODE MOVEABLE PRELOAD
DISCARDABLE
EXPORTS (3)
WEP (4)
INSATSU

(1) Define the module name of the DLL.

(2) Display an alarm message if you run a Windows application
under DOS.

(3) Set the Windows End Procedure (WEP) callback function
which processes the DLL before unloading the library. The
WEP is required and must not be omitted.

(4) Set the specified object name.

Chapter 4. Linking Programs 81

Linkage Types and Program Structure

This section describes the structure of an executable program
created by linking.

There are two types of linkage, static and dynamic.

Static Linkage

The calling program and called program are all linked during
linking.

Dynamic Linkage

The called program is linked to the calling program at run time.

The following shows the relationship of the program structures
created by static and dynamic linkage. Throughout this section,
the main program is the program initially run and the
subprogram is the program called from the main program. A
program called from a subprogram is also called a subprogram.

Simple Structure

Simple structure means that multiple object programs are linked
to a single executable program by a static linkage. Therefore, the

82 Chapter 4. Linking Programs

main program and subprograms are all loaded to virtual storage
at the beginning of execution, thus allowing programs to call
subprograms efficiently.

You need all subprograms during linking when you create an
executable file having a simple structure.

Dynamic Link Structure

Dynamic link structure means that the main program object
program and the import library containing subprogram
information are dynamically linked to a single executable
program.

Unlike the simple structure, no subprograms are linked to the
executable file for the dynamic link structure. Subprograms are
loaded to virtual storage when the main program is loaded.

Programs are loaded by the dynamic linker of the system using
subprogram information created in the executable file during
dynamic linking. To create an executable file having the dynamic
link structure, the import library containing all subprograms
called by the program is required during linking.

Dynamic Program Structure

Dynamic program structure uses only the main program object
program as an executable program in a dynamic link. Therefore,
unlike the dynamic link structure, no subprogram information is
included in the executable program.

With dynamic program structure, subprograms are loaded by
the calling program from the COBOL85 run-time system. For this
reason, the loading function of the system is used.

The program structure is determined by the format of the CALL
statement, options specified at compilation, and type of link. The
following table lists the relationship between the program

Chapter 4. Linking Programs 83

structure, CALL statement, compiler options, and link types. For
compiler option DLOAD, refer to Appendix A, “Compiler
Options.”

Table 8. Relationship between program structure, CALL statement,
compiler options, and linkage types

Program
Structure

Call Statement Compiler
Option

Linkage Type

Simple
structure

CALL "program-name" NODLOAD Static linkage

Dynamic link
structure

CALL "program-name" NODLOAD Dynamic
linkage

Dynamic
program
structure

CALL data-name ___________ Dynamic
linkage

CALL "program-name"
CALL data-name
(coexisting)

DLOAD

CALL "program-name" DLOAD

84 Chapter 4. Linking Programs

Link Procedures

Object programs compiled from COBOL source programs
(COBOL object programs) can be linked through window
operation with the WINLINK command, or from the command
prompt with link commands.

This section describes the procedures for linking with the
WINLINK command. Linking with commands is explained in
“Using Commands to Link.”

Linking a Single Object Program

To create an executable program that does not call any
subprograms:

• Activate the WINLINK [Linking Files] window. See
“Activating the WINLINK Window.”

• Select EXE in the Type box.

• Enter the target name. See “Entering the Target Name.”

• Enter the other files (object file, module definition file)
required for linking in the File Names list box. See “Entering
Files.”

• Set linker options. See “Setting Linker Options.”

• Start linking. See “Starting and Quitting Linking.”

• Quit linking. See “Starting and Quitting Linking.”

Chapter 4. Linking Programs 85

Creating a DLL

To create a DLL by linking a subprogram object program:

• Activate the WINLINK [Linking Files] window. See
“Activating the WINLINK Window.”

• Select DLL in the Type box.

• Enter the target name. See “Entering the Target Name.”
Do not enter any object files created by specifying compiler
option MAIN during compilation.

• Enter the other files (object file, module definition file)
required for linking in the Link File list box. See “Entering
Files.”

• Set linker options. See “Setting Linker Options.”

• Start linking. See “Starting and Quitting Linking.”

• Quit linking. See “Starting and Quitting Linking.”

Creating an Executable Program with a Simple Structure

The COBOL object program must be compiled from a COBOL
source program containing no dynamic CALL statements (those
using data names to specify the called program name), or be
compiled after specifying the compiler option NODLOAD.

To create an executable program having a simple structure by
linking a COBOL object program that calls a subprogram:

• Create the subprogram as an object program or library. See
“Procedures for Creating a Library.”

• Activate the WINLINK [Linking Files] window. See
“Activating the WINLINK Window.”

86 Chapter 4. Linking Programs

• Select EXE in the Type box.

• Enter the target name. See “Entering the Target Name.”

• Enter the other files required for linking in the File Names list
box. See “Entering Files.”

− Object file

− Module definition file

− Subprogram created in Step 1

− Object file (when the subprogram is an object program)

− Library (when the subprogram is a library)

• Set linker options. See “Setting Linker Options.”

• Start linking. See “Starting and Quitting Linking.”

• Quit linking. See “Starting and Quitting Linking.”

Creating an Executable Program with a Dynamic Link
Structure

The COBOL object program must be compiled from a COBOL
source program containing no dynamic CALL statements (those
using data names to specify the called program name), or be
compiled after specifying the compiler option NODLOAD.

To create an executable program having a dynamic link structure
by linking a COBOL object program that calls a subprogram:

• Activate the WINLINK [Linking Files] window. See
“Activating the WINLINK Window.”

• First create a DLL from the subprogram:

− Select DLL in the Type box.

− Enter the target name. See “Entering the Target Name.”

Chapter 4. Linking Programs 87

• Enter the other files required to link the subprogram in the
File Names list box. See “Entering Files.”

− Object file (Subprogram)

− Module definition file (Subprogram)

• Set linker options. See “Setting Linker Options.”

• Create an import library (16).
For Windows 3.1, check "Building Import Libraries" in the
Command menu.

• Start linking the subprogram. See “Starting and Quitting
Linking.” The DLL, the import library (DLL name.LIB) and
export file of the subprogram are created.

If the import library already exists a message will be
displayed.

Then create the executable for the main program:

• Select EXE in the Type box.

• Enter the target name. See “Entering the Target Name.”

• Enter the other files required to link the main program in the
File Names list box. See “Entering Files.”

− Object file (Main program)

− Module definition file

− Import library (created when you started linking the
program)

• Set linker options. See “Setting Linker Options.”

• Start linking. See “Starting and Quitting Linking.”

• Quit linking. See “Starting and Quitting Linking.”

88 Chapter 4. Linking Programs

Creating an Executable Program with a Dynamic
Program Structure

The COBOL object program used here must be compiled from a
COBOL source program containing CALL statements in data
name specification, or be compiled after specifying the compiler
option DLOAD.

To create an executable program having a dynamic program
structure by linking a COBOL object program that calls a
subprogram:

• Create the subprogram as a DLL.

• Activate the WINLINK [Linking Files] window. See
“Activating the WINLINK Window.”

• Select EXE in the Type box.

• Enter the target name. See “Entering the Target Name.”

• Enter the other files (object file(main program)) required for
linking in the Link File list box. See “Entering Files.”

• Set linker options. See “Setting Linker Options.”

• Start linking. See “Starting and Quitting Linking.”

• Quit linking. See “Starting and Quitting Linking.”

Chapter 4. Linking Programs 89

Creating a Library

To create a library by linking object programs of multiple
subprograms:

• Activate the WINLINK [Linking Files] window. See
“Activating the WINLINK Window.”

• Switch to the WINLINK [Building COBOL Libraries]
window. Select Building COBOL Libraries from the
Commands menu.

• Enter the COBOL library name. See “Entering a Target
Library Name.” If an existing file name is entered, the
existing file is deleted and a new file is created.

• Enter the other files to be included in the library in the Object
File list box. See “Entering Files.”

• Start library building. See “Starting and Quitting Library
Building.”

• Quit library building. See “Starting and Quitting Library
Building.”

Creating an Import Library

WINLINK also creates an import library when it creates a DLL.
To create an import library:

• Create the subprogram as a DLL.

• Specify creation of an import library. (16)
For Windows 3.1, check "Building Import Libraries" from the
command menu. For Windows 95 and Windows NT, the
import library is created automatically.

• Start linking. After linking, the following files are created:

90 Chapter 4. Linking Programs

− DLL

− Import library of subprogram (DLL-name.LIB)

− Export file (32)

If an import library already exists, an alarm message is
displayed.

WINLINK

WINLINK is a utility that links programs compiled by COBOL85
to create executable programs and DLLs, libraries, and import
libraries. WINLINK provides two windows.

• WINLINK [Linking Files] window:

Creates import libraries, DLLs, and executable programs.

• WINLINK [Building COBOL Libraries] window:

Creates libraries.

Switch these windows by selecting the Commands menu on the
menu bar in each window. For details about how to use the
windows, refer to the online help.

Activating the WINLINK Window

To activate the WINLINK window, do one of the following:

• Select WINLINK from the Tools menu in P-STAFF (32).

• Select WINLINK.EXE in the File Manager directory window
(16).

Chapter 4. Linking Programs 91

WINLINK [Linking Files] Window

The WINLINK [Linking Files] window is used to create import
libraries, DLLs, and executable programs by linking.

Use the menu bar to exit the window, set linker options, or
switch between windows.

Select the target type as either EXE or DLL.

The following sections describe how to use the window.

Figure 34. The WINLINK window

The WINLINK window contains the following elements:

Commands

Switches the window between linking files mode and
building COBOL libraries mode.

92 Chapter 4. Linking Programs

Help

Access the online help.

Target edit box

Specify the name of the file to be created.

Type radio buttons

Specify whether an EXE or DLL file should be created.

Link File edit box

Specify the name of a file to be added to the List.

Link Object List

Displays a list of the input files to the link.

Browse button

Click to select a file to be included in the link.

Add button

Click to add the file in the Link File edit box to the List.

Delete button

Click to remove the selected file(s) from the List.

OK button

Click to start the link and close the WINLINK window.

Cancel button

Click to close the WINLINK window without performing a
link.

Options button

Click to specify the link options.

Chapter 4. Linking Programs 93

Link button

Click to start the link and keep the WINLINK window open
for further links.

Entering the Target Name

The name of the file to be created by linking can be entered in the
Target edit box using one of two methods.

Method 1

1. Select whether the target should be EXE or DLL in the Type
box.

2. Enter, or browse and select, an object file in the Link File edit
box.

3. Click the Add button. The object file name is added to the
Link Object List. A target name is automatically created by
combining the extension specified in the Type box with the
base of the object file name.

Method 2

Enter the name of the file to be created directly in the Target edit
box.

If the Type is selected after a file name is entered in the Target
edit box, the extension of the entered file name will change to the
extension of the file selected by the option button.

Entering Files

Enter the names of files required to link in the Link Object List
box by following the procedures below.

94 Chapter 4. Linking Programs

1. Click on the Browse button, then select the files required to
link from the Browse Files dialog box. Files required to link
include:

− Object file

− Module definition file [(16): required] [(32): when creating
a DLL]

− Library

− Import library (when creating an executable program
having a dynamic link structure)

2. Click on the OK button. The selected file names are displayed
in the Link File edit box. Alternatively the file name(s) can be
keyed directly into the Link File edit box.

3. Click on the Add button. The file names are added to the File
Names list box.

4. Repeat Steps 1 to 3 until all files to link are entered.

Building an Import Library

In Windows 95 and Windows NT, an import library and an
export file are automatically created when a DLL is created.

To create an import library under Windows 3.1, check "Building
Import Library" in the WINLINK [Linking Files] Command
menu.

Setting Linker Options

Different Linker Options screens are used for (32) Windows 95
and Windows NT and (16) Windows 3.1.

Chapter 4. Linking Programs 95

Windows 95 and Windows NT

Linker options are set using the Linker Options dialog box
displayed by clicking the Options button in the WINLINK
[Linking Files] window.

A main link option (Debugging is excluded) is automatically set.

See the LINK command options table in Appendix J.

Figure 35. The Linker Options dialog box

The Linker Options dialog box contains the following elements:

Linker Options edit box

Enter link options.

Delimit multiple options with one or more spaces.

Debug button

Click to include linker debug options in the Linker Options
edit box.

OK button

Click when finished specifying linker options.

Cancel button

Click to cancel any linker option settings or changes and
return to the state before the dialog box was opened.

Help button

Click to access the online help.

96 Chapter 4. Linking Programs

Windows 3.1

Figure 36. The Linker Options dialog box

The Linker Options dialog box contains the following elements:

CO

Prepares for debugger operation. Use this option when
compiler option TEST was specified during compilation of
source programs.

NOD

Restricts the linker to use only standard libraries. Always use
this option when linking object programs compiled by the
COBOL85 compiler.

NOE

Disables the library extended dictionary.

M

Outputs a list of public symbols to the map file.

Options

Allows direct key entry of other linker options.

OK button

Click when finished specifying linker options.

Cancel button

Chapter 4. Linking Programs 97

Click to cancel any linker option settings or changes and
return to the state before the dialog box was opened.

Starting and Quitting Linking

After all information required for linking has been set, start
linking. To start linking, select the Link button.

The system brings up a command prompt window that displays
the linker messages. (32)

A link message is displayed in the message window. (16)

A link exit message is displayed in the command prompt
window. Make sure that linking has completed successfully, then
close the command prompt window. (32)

A link exit message is displayed in the message window. Make
sure that linking has completed successfully, then close the
message box. (16)

If a link error occurs, see “Linker Messages” and take action.

To continue linking, repeat the procedure from the entering a
target name step.

To quit linking, click on the Cancel button in the WINLINK
[Linking Files] window. This closes the window.

Please note the following points as they are causes of common
link errors:

• Always use the linker corresponding to the object.

• Do not create an executable program only from object
programs containing the compiler option NOMAIN (that is,
no compiler option MAIN was used during compilation).

• Do not create an executable program from multiple programs
containing the compiler option MAIN.

98 Chapter 4. Linking Programs

WINLINK [Building COBOL Libraries] Window

Use the WINLINK [Building COBOL Libraries] window to link
multiple object programs to a library.

Figure 37. The WINLINK [Building COBOL Libraries] window

The WINLINK [Building COBOL Libraries] window contains the
following elements:

Commands

Switches the window between linking files mode and
building COBOL libraries mode.

Help

Accesses the online help.

Chapter 4. Linking Programs 99

COBOL Library File edit box

Specify the name of the library file to be created.

[COBOL Library File] Browse button

Click to select the name of a library file to be created.

Object File edit box

Specify the name of a file to be added to the List.
Do not enter programs containing compiler option MAIN.

Link Object List

Displays a list of input files to include in the link.

[Link Object] Browse button

Click to select a file to be included in the link.

Add button

Click to add the file in the Object File edit box to the List.

Delete button

Click to remove the selected file(s) from the List.

OK button

Click to start the link and close the WINLINK [Building
COBOL Libraries] window.

Cancel button

Click to close the WINLINK [Building COBOL Libraries]
window without performing a link.

Build button

Click to start the link and keep the WINLINK [Building
COBOL Libraries] window open for further links.

The following sections describe how to use the window to build
libraries.

100 Chapter 4. Linking Programs

Entering a Target Library Name

Enter the name of a target library in the COBOL Library File edit
box by using either of the procedures below.

Method 1

Enter the name of an object file in Object File. The entered file
name having the extension LIB is displayed in the COBOL
Library File edit box.

Method 2

Enter the name of the target file in the COBOL Library File edit
box.

If an existing library name is entered here, the library is deleted
and a new library is created.

Entering Files

Enter the names of object files to be linked in the Link Object List
with the procedures below.

1. Click on the [Link Object] Browse button, then select required
files from the Browse Files dialog box.

2. Click on the Open button. The selected file names are
displayed in the Object File edit box. Alternatively the file
name(s) can be keyed directly into the Object File edit box.

3. Click on the Add button. The file names are added to the
Link Object List.

4. Repeat Steps 1 to 3 until all object files to be linked are
entered.

Chapter 4. Linking Programs 101

Starting and Quitting Library Building

After all information required for linking has been set, start
building the libraries. To start building, click on the Build button.

Windows 95 and Windows NT: The system brings up a
command prompt window that displays the linker messages.

Windows 3.1: A building library message is displayed in the
message window.

Windows 95 and Windows NT: A building library end message
is displayed in the command prompt window. Make sure that
linking has completed successfully, then close the command
prompt window.

Windows 3.1: A building library exit message is displayed in the
message window. Make sure that linking has completed
successfully, then close the message window.

To continue building, repeat the procedure from the “entering a
target library name” step.

To quit building, click on the Cancel button in the WINLINK
[Building COBOL Libraries] window. This closes the window.

Using Commands to Link

Object programs can also be linked with commands. This section
describes link operation with commands.

There are two commands, the LINK command and the LIB
command.

102 Chapter 4. Linking Programs

LINK Command (32)

In Windows 95 and Windows NT, the LINK command performs
the link operation. Refer to “LINK Command” in Appendix J for
details of the format of the command.

When executing the LINK command, the following libraries
must be specified:

• F3BICIMP.LIB

• LIBC.LIB

• KERNEL32.LIB

• USER32.LIB

Some examples of how to use the LINK command follow.

LIB Command (32)

In Windows 95 and Windows NT, the LIB command performs
the creation of standard libraries and import libraries. Refer to
“LIB Command” in Appendix J for details of the format of the
command.

Examples of Using the LINK and LIB commands (32)

Some examples of using the LINK command and the LIB
command are shown here.

When Linking an Object Program

LINK A.OBJ F3BICIMP.LIB LIBC.LIB KERNEL32.LIB USER32.LIB
/OUT:A.EXE

Chapter 4. Linking Programs 103

When Creating a DLL

 To create an export file:

LIB /DEF:SUB.DEF /OUT:SUB.LIB /MACHINE:IX86 SUB.OBJ

 To create a DLL:

LINK SUB.OBJ SUB.EXP F3BICIMP.LIB LIBC.LIB KERNEL32.LIB
USER32.LIB /DLL /OUT:SUB.DLL

When Creating an Executable Program with a Dynamic Link
Structure

 To create an import library:

LIB /DEF:BBB.DEF /OUT:BBB.LIB /MACHINE:IX86 BBB.OBJ

 To create a DLL:

LINK BBB.OBJ BBB.EXP F3BICIMP.LIB LIBC.LIB KERNEL32.LIB USER32.LIB /DLL
/OUT:BBB.DLL

 To create an executable program:

LINK AAA.OBJ F3BICIMP.LIB LIBC.LIB KERNEL32.LIB USER32.LIB BBB.LIB
/OUT:AAA.EXE

LINK Command (16)

Windows 3.1 provides the LINK, LIB, and IMPLIB commands
for linking.

104 Chapter 4. Linking Programs

Figure 38. Files used by the LINK command

Files or libraries 1) to 6) correspond to 1) to 6) in Table 5. Files 7)
and 8) are explained below.

• F1BCARMV.LIB of 7): Arithmetic library provided by
COBOL85. Always specify this library when linking COBOL
programs.

• F1BCOWEP.LIB of 7): Library provided by COBOL85.
Always specify this library when building DLLs by linking
COBOL programs.

• F1BCCIMP.LIB and LIBW.LIB of 8): Run-time system
provided by COBOL85 and import library of Windows 3.1.
Specify these files when linking COBOL programs.

Chapter 4. Linking Programs 105

Linker Messages

This following sections describe linker messages displayed
during COBOL85 operation in Windows 95 and Windows NT
(32) and Windows 3.1 (16).

Windows 95 and Windows NT

The following linker messages may be displayed in Windows 95
and Windows NT.

LNK1104

Explanation:
There is not enough space on the disk or root folder.
Operator response:
Delete files to make space.

LNK1123

Explanation:
An attempt was made to link Microsoft Windows operating
system Version 3.1 objects with the 32 bit linker.
Operator response:
Use 32 bit Objects.

LNK1561

Explanation:
An attempt was made to create an executable program (EXE) by
compiling the main program without the compiler option MAIN.
Operator response:
Specify the compiler option MAIN before compiling the main
program.

106 Chapter 4. Linking Programs

LNK2001

Explanation:
- No internal name of the export routine is defined in the
EXPORTS definitions in the module definition file.
- No internal name of the export routine is set in the library or
object file.
Operator response:
Make sure that the export name in the EXPORTS statement of the
module definition file is set in the library or object file.

LNK2005

Explanation:
Tried to make a single executable file from two or more
programs compiled with the MAIN option.
Operator response:
Specify only the MAIN compiler option for the main program.

LNK4006

Explanation:
- EXPORTS is duplicated in the module definition file.
- The internal name of existent data was found in the library or
object file.
Operator response:
Make sure that the export name in the EXPORTS statement of the
module definition file is duplicated in the library or object file.

Chapter 4. Linking Programs 107

Linker Messages (16)

The following linker messages may be displayed in Windows 3.1:

L1052

Explanation:
Too many libraries were linked.
Operator response:
- Link libraries to reduce the number of libraries.
- Use a module requiring less libraries.

L1081

Explanation:
There is not enough space on the disk or root directory.
Operator response:
- Delete files to make space.
- Move files to make space.

L1082

Explanation:
The directory containing COBSTUB.EXE was not set in the
environment variable PATH.
Operator response:
Set the install directory of the COBOL system in the environment
variable PATH.

L1101

Explanation:
An attempt was made to link Windows NT objects with the
Windows 3.1 linker.
Operator response:
Use the Windows NT linker.

108 Chapter 4. Linking Programs

L2022

Explanation:
- No internal name of the export routine is defined in the
EXPORTS definitions in the module definition file.
- No internal name of the export routine is set in the library or
object file.
Operator response:
Make sure that the export name in the EXPORTS statement of the
module definition file is set in the library or object file.

L2023

Explanation:
- EXPORTS is duplicated in the module definition file.
- The internal name of existent data was found in the library or
object file.
Operator response:
Make sure that the export name in the EXPORTS statement in the
module definition file is duplicated in the library or object file.

L4038

Explanation:
An attempt was made to create an executable program (EXE) by
compiling the main program without the compiler option MAIN.
Operator response:
Specify the compiler option MAIN before compiling the main
program.

Chapter 5. Executing Programs

This chapter describes the procedures for executing programs,
setting run-time environment information, and operating
windows for execution.

110 Chapter 5. Executing Programs

Executing Sample Programs

This section shows how to execute the program in Sample 1 with
WINEXEC in Windows 95/Windows NT and Windows 3.1.

Windows 95 and Windows NT

Throughout this section, assume the run-time information to be:

C:FSC\PCOBOL32\SAMPLES\SAMPLE1\SAMPLE1.EXE

Select WINEXEC from the Tools menu of the P-STAFF window.
The WINEXEC window appears.

Figure 39. The WINEXEC window

Chapter 5. Executing Programs 111

• Enter the name of the file to execute (SAMPLE1.EXE) in the
Command Line edit box.

• Click on the Execute button. The Run-time Environment
Setup window is displayed.

Figure 40. The Run-time Environment Setup window

• For Sample 1, there is no information to set. Click on the OK
button in the Run-time Environment Setup window. The
system starts executing the program.

• For Sample 1, the system inputs or outputs data using the
COBOL ACCEPT/DISPLAY function. A console window is
displayed.

112 Chapter 5. Executing Programs

Figure 41. The COBOL85 console window

• Enter a lowercase letter, then press the ENTER key. A
lowercase letter is displayed along with corresponding text.
In the following example, cobol85 is displayed based on the
specified letter "c".

Chapter 5. Executing Programs 113

Figure 42. The COBOL85 console window and message window

• Check the results, then click on the OK button in the message
window. The message window and console window close.

This completes execution of the sample program.

Windows 3.1

Throughout this section, assume the run-time information to be:

C:FSC\PCOBOL16\SAMPLES\SAMPLE1\SAMPLE1.EXE.

Select WINEXEC from the Utilities menu in the P-STAFF
window. The WINEXEC window appears.

114 Chapter 5. Executing Programs

 Figure 43. The WINEXEC window

• Enter the name of the file to execute (SAMPLE1.EXE) in the
Command Line edit box.

• Click on the Execute button. The Run-time Environment
Setup window is displayed.

Figure 44. The Run-time Environment Setup window

Chapter 5. Executing Programs 115

• For Example 1, there is no information to set. Click on the
Run button in the Run-time Environment Setup window. The
system starts executing the program.

• For Example 1, the system inputs or outputs data using the
COBOL ACCEPT/DISPLAY function. A console window is
displayed. Enter a lowercase letter, then press the ENTER key.
A lowercase letter is displayed along with corresponding text.
In the following example, cobol85 is displayed based on the
specified letter "c".

Figure 45. The COBOL85 console window

116 Chapter 5. Executing Programs

Figure 46. The COBOL85 console window and message window

• Check the results, then click on the OK button in the message
window. The message window and console window close.

This completes execution of the sample program.

Chapter 5. Executing Programs 117

Execution Procedures

Executable programs compiled and linked from COBOL
programs can be executed in the same manner as normal
Windows applications(*) with the WINEXEC command. This
section describes how to run COBOL programs.

(*) The applications work with:

• Windows 95

• Windows NT Version 3.51 (both server and workstation
versions)

• Windows 3.1

Before Executing COBOL Programs

Before executing COBOL programs, you must set run-time
environment information.

COBOL85 calls resources and data to be assigned for executing
COBOL program run-time environment information. For
information about setting the run-time environment, see “Setting
Run-time Environment Information.”

Before Executing COBOL Programs (16)

Before executing a COBOL program under Windows 3.1, ensure
that SHARE was loaded in MS-DOS command mode to enabled.
This allows file sharing and exclusive systems to be included
before running Windows. The format of the SHARE command is
shown below.

SHARE /L:50 /F:2048

118 Chapter 5. Executing Programs

The L option: sets exclusive control option for files and records.
Use the value determined from the following expression as
standard when executing a COBOL program.

When executing multiple COBOL programs at the same time
(also for different execution units), add the value determined for
each program:

Value to be entered = 20 + number of files opened
concurrently. (Number of files * 2 for index files only) +
number of records exclusively controlled (or locked)

The F option: sets the number of files to be opened. To open
many files concurrently, enter a large value. To execute COBOL
programs, specify a value of 2048 or more, depending on the
length of the path name of files to be opened.

Once loaded, the SHARE command cannot be selected again. If
any SHARE option must be changed, restart the system, then
execute the SHARE command with the revised command line.

Executing COBOL Programs

COBOL programs can be executed from the WINEXEC window
or with a batch file. This section describes how to use the
WINEXEC window to execute COBOL programs.

1. Activate the WINEXEC window. See “Activating the
WINEXEC Window.”

2. Enter the name of the file to be executed in the Command
Line edit box. See “Entering a File Name.”

3. When any argument is specified, directly type it in the
Command Line edit box in the same command line form.

4. Start execution by selecting the Execute button in the
WINEXEC window.

Chapter 5. Executing Programs 119

5. To re-execute a program already executed, double-click on
the file name displayed in the History list box.

6. Set the run-time environment information. When a COBOL
program is executed, the Run-time Environment Setup
window appears. Set run-time environment information if
necessary, then close the Run-time Environment Setup
window. See “Run-time Environment Setup Window”.

7. Quit execution. To quit execution and close the WINEXEC
window, select Exit in the WINEXEC window.

Setting Run-time Environment Information

This section explains the relationship between the types of run-
time environment information and setup procedures, and how to
set each item in the run-time environment.

Types of Run-time Environment Information

Information required to execute COBOL applications is called
run-time environment information.

There are two types of run-time environment information,
environment variable information and entry information.
Environment variable information includes items such as the
console window size, console font, and file identifier.

Entry information includes the dynamic program structure.

The following table lists the types of run-time environment
information. For details on run-time environment information,
see “Format of Run-time Environment Information.”

120 Chapter 5. Executing Programs

Table 9. Types of run-time environment information

Run-time
Environment
Information

Description Run-time
Environment
Information

Description

Environment variable information @AllFileExclusive Set exclusive control
of files

@GOPT Set run-time options @CBR_CIINF Set the logical
destination definition
file

@MGPRM Set the GS-series
format run-time
parameter

@CBR_ENTRYFILE(3
2)

Set the entry
information file

@IconDLL Set the DLL-name of
an icon resource

@CBR_PSFILE_xxx Set the connected-
product-name used
from the presentation
file

@IconName Set the identifier of
an icon resource

@NoMessage Set to suppress run-
time message

@ScrnSize Set the size of the
logical screen for
screen handling

File-identifier Set the name of the file
used by the program

@MessOutFile Set the message
output file

File-identifier Set the information file
used by the program

@CnslWinSize Set the size of console
window

SYSIN-access-name Set the input file for
the ACCEPT/
DISPLAY function

@CnslBufLine Set the buffers count
for the console
window

SYSOUT-access-
name

Set the output file for
the ACCEPT/
DISPLAY function

@WinCloseMsg Set a display message
when the window
closes

TERMINATOR Set the function keys
for screen handling

Chapter 5. Executing Programs 121

Table 9. Types of run-time environment information (cont.)

Run-time Environment
Information

Description Run-time
Environment
Information

Description

@EnvSetWindow Set whether the
Run- time
Environment Setup
window is used

FCBxxxx Set FCB control
statements

@PrinterFontName Set the font used for
print files

FOVLDIR Set the directory
containing form
overlay patterns

@CnslFont Set the console
window font

OVD_SUFFIX Set the extension of
the form overlay
pattern file

@ScrnFont Set the font used for
screen handling

FOVLTYPE Set the format of
the form overlay
pattern file

@ODBC_Inf Set the ODBC
information file

@PRN_FormName_xxx(3
2)

Form name

@CBR_PrintTextPosition(3
2)

Method of
calculating character
arrangement
coordinates

@DefaultFCB_Name Name of default
FCB

@CBR_TextAlign(32) Matching the top
and bottom when
arranging character
lines

@CBR_PrinterANK_Size(
32)

Size of ANK
character

@SQL_CLI (16) Set database linkage
software

@SequeLink_Inf(16) Set the SequeLink
information file

@ODBC_Inf (16) Set the ODBC
information file

Entry information
Subprogram-name DLL-file-name Secondary-entry-

point-name
Subprogram-name

Subprogram-name2 Subprogram-name

Windows 95 and Windows NT can have run-time environment
information as environment variables, you can set up COBOL
environment variable information directly in the user
environment variables.

122 Chapter 5. Executing Programs

Windows NT can also use COBOL run-time environment
variables and user environment variables for COBOL execution
with the initialization file and the Run-time Environment Setup
window. Information in the initialization file is reflected in user’s
environment variables upon execution of a COBOL program,
then reset when the program ends.

How to Set Run-time Environment Information

Run-time environment information can be set as follows:

• By editing AUTOEXEC.BAT with a text editor. (Windows 95)
or from the System control panel. (Windows NT)

• From the command prompt in the same manner as normal
environment variables. (32)

• In the initialization file.

• In the Run-time Environment Setup window.

• From the command line.

If run-time environment information is duplicated, precedence is
given in the following order:

1. Run-time Environment Setup window

2. Command line

3. Initialization file

4. Command prompt (32)

5. AUTOEXEC.BAT/ System of Control Panel (Windows NT)

Chapter 5. Executing Programs 123

Setting in AUTOEXEC.BAT (Windows 95)

Environment variables can be set when the operating system
starts by editing AUTOEXEC.BAT. Each variable is set on a
separate line by entering:

environment-variable=value

Where the environment-variable is one of the strings from the
previous table, and value is the value to be set.

Setting from the Control Panel (Windows NT)

Set environment variables common to multiple applications by
the Control Panel before execution. For details about setting from
the Control Panel, refer to the online help.

Setting from the Command Prompt (32)

Use the SET command to set environment variables from the
Command Prompt before executing programs.

A batch file can also be used. Environment information set here
is effective only within the specific command prompt session
used.

Setting in the Initialization File

Use an initialization file to set application-specific information
required every time you run an application.

Create the initialization file in the directory containing the
programs using the file name "COBOL85.CBR." If any other file
name is given, you must enter the initialization file name in the
command line upon execution.

124 Chapter 5. Executing Programs

The contents of the initialization file can be modified with an
editor or by saving the contents set in the Run-time Environment
Setup window. Programs can be executed even if no initialization
file is available.

Contents of the Initialization File

There are two types of sections in initialization files, one for
setting environment variable information, and the other for entry
information. The section is identified by using a section name
enclosed in brackets ("[]"). A section continues until the next
section name is found.

The format of the initialization file is shown below:

[program-name] ...(1)
run-time environment information = ...(2)
entered contents

[program-name.ENTRY] ...(3)
run-time environment information = ...(4)
entered contents

1) Section name of run-time environment information:
This indicates the start of environment variable information.
Set the name of the program to execute as the section name of
environment variable information. Run-time environment
information set in the section is effective for the program
defined as the section name as well as for programs called
from the defined program.

2) Environment variable information:
This defines environment variable information. For the
format of each environment variable information, see
“Environment Variables Information.” Only one environment
variable can be defined on each line.

3) Entry information section name:
This indicates the start of entry information. Define the
program name plus ".ENTRY" as the section name of entry
information.

Chapter 5. Executing Programs 125

4) Entry information:
This defines entry information. For the format of each entry
information, see “Entry Information.” Only one entry can be
defined on a single line.

Entry Example of the Initialization File
 [PROG1]
@EnvSetWindow=USE
@CnslWinSize=(80,24)
@CnslBufLine=100
@WinCloseMsg=ON
@IconName=COB85EXE

[PROG1.ENTRY]
SUB1=SUB1.DLL
ENTRY1=PROG1

Do not insert any spaces between the brackets and section name.

Saving the information set in the Run-time Environment Setup
window modifies the contents of the initialization file.

Setting in the Run-time Environment Setup Window

Setting run-time environment information in the Run-time
Environment Setup window allows you to easily change
information for every test. See “Run-time Environment Setup
Window”.

If the information is not saved in the initialization file, the run-
time environment information set in the Run-time Environment
Setup window is only effective for that execution of the program.

Setting from the Command Line

This approach specifies run-time environment information as
arguments of a command when starting a program from the
command prompt. You can specify the run-time parameter in the
GS-series (M-host) format (run-time environment information

126 Chapter 5. Executing Programs

name @MGPRM), initialization file, and run-time options (run-
time environment information name @GOPT).

The format is shown below:

executable-file-name [run-time parameter] [-CBR initialization file-name] [-
CBL run-time option]

-CBR and -CBL can be in any order.

Specifying the Run-time Parameter in the GS-series Format

The first argument following the command name is the GS-series
format run-time parameter. For example:

PROG1.EXE "ABCDE"

ABCDE is specified as the GS-series format run-time parameter.

Note: This method is applicable only to users of the GS-series.

Specifying the Initialization File Name

• When COBOL is the main program

Specify the initialization file following identifier -CBR or
/CBR.

• When C is the main program

Call the following function immediately after JMPCINT2 is
called:

int JMPCINTC (int 0, void ¶m)

Chapter 5. Executing Programs 127

(*1) Pointer to a NULL terminated string containing the
initialization file name including path name (may be omitted).
The maximum length of the string which can be specified is 127
characters (including the terminator).

JMPCINTC return value Meaning
0 Normal termination
-1 Insufficient work area / Non-call of JMPCINT2

/ Specified mistake of function code.
1 Multiple calls: i.e. JMPCINTC was called after it

had already been called. The effective
initialization file name is that specified in the
first execution of JMPCINTC.

• When Visual Basic is the main program

Make the declarations described below.
Call JMPCINTB immediately after the call to JMPCINT2.

Description in DECLARE phrase:

Private Declare Sub JMPCINT2 Lib "F3BIPRCT.DLL" ()
Private Declare Sub JMPCINT3 Lib "F3BIPRCT.DLL" ()
Private Declare Function Sub JMPCINTB Lib "F3BIPRCT.DLL"(*)
Alias "JMPCINTB@8" (ByVal a As Long, ByVal D As String) As long

(*) Note this line is continued in the next line, and is actually
only a single line.

Example of calling JMPCINTB:

Static DATA As String * 14
Dim ans As Long

Data = "c:\test.cbr" & chr(0)
ans = JMPCINTB(0, DATA)

128 Chapter 5. Executing Programs

Where the meaning of the arguments and return value of
JMPCINTB are as follows.

JMPCINTB argument value Meaning
First argument value Function code. (Change of CBR name,

0 is set.)
Second argument value Add Initialization file name string

(Chr(0) terminator) for execution. The
maximum length of the string which
can be specified Is 127 characters
(including the terminator).

JMPCINTB return value Meaning
0 Normal termination
-1 Insufficient work area / Non-call of

JMPCINT2 / Specified mistake of
function code.

1 Multiple calls: i.e. JMPCINTB was
called after it had already been called.
The effective initialization file name is
that specified in the first execution of
JMPCINTB.

Do not call JMPCINT2 / JMPCINT3 / JMPCINTC / JMPCINTB
more than once in the same application. Behavior cannot be
guaranteed on second and subsequent calls.

Specifying Run-time Options in the Command Line

Run-time options are specified following identifier -CBL or
/CBL. For the format of the run-time options, see “Format of
Run-time Options.” For example:

PROG1.EXE -CBL r20 c20

r20 and c20 are specified as run-time options.

Chapter 5. Executing Programs 129

Format of Run-time Environment
Information

This section describes the format of run-time environment
information. The parameters for some fields can be case-sensitive
so be sure to enter values for the parameters as shown.

Environment Variables

The following table lists environment variable information. The
numbers refer to the detailed descriptions that follow the table.

Table 10. Environment Variable Information

Function Environment Variable
Information

No.

Environment Variables Related to Run-time Options
Set run-time options @GOPT 1
Set the GS-series format run-time parameter @MGPRM 2
Environment variables related to windows
Set the DLL-name of an icon resource
Set the identifier of an icon resource
Set the size of the logical screen for screen handling
Set the size of the console window
Set the buffer count for the console window

@IconDLL
@IconName
@ScrnSize
@CnslWinSize
@CnslBufLine

3
4
5
7
8

Environment variables related to messages
Set the message output file
Set a display message when the window closes
Set to suppress run-time messages

@MessOutFile
@WinCloseMsg
@NoMessage

6
9
20

Environment variables related to fonts
Set the console window font
Set the font used for screen handling
Set the font used for print files

@CnslFont
@ScrnFont
@PrinterFontName

12
13
14

130 Chapter 5. Executing Programs

Table 10. Environment Variable Information (cont.)

Function Environment Variable
Information

No.

Environment variables related to files / related to SQL
Set exclusive control of files
Set the logical destination definition file
Set the entry information file (32)
Set the file used by the program
Set the input file for the ACCEPT/DISPLAY function
Set the output file for the ACCEPT/DISPLAY function
Set the directory containing form overlay patterns
Set the extension of the form overlay pattern file
Set the format of the form overlay pattern file

@AllFileExclusive
@CBR_CIINF
@CBR_ENTRYFILE
File-identifier
SYSIN-access-name
SYSOUT-access-name
FOVLDIR
OVD_SUFFIX
FOVLTYPE

11
17
18
26
28
29
32
33
34

Environment variables related to presentation files
Set the connected product name used from the
presentation file (by destination)
Set the information file used by the program
Set the connected product name used from the
presentation file (by file)

@CBR_PSFILE_xxx

File-identifier
File-identifier

19

27
27

Environment variables related to printing
Specify method of calculating character arrangement
coordinates (32)
Specify alignment of print characters with either top or
bottom of line (32)
Specify paper size (32)
Specify default FCB name
Specify ANK character size (32)

@CBR_PrintTextPosition

@CBR_TextAlign

@PRN_FormName_xxx
@DefaultFCB_Name
@CBR_PrinterANK_Size

21

22

23
24
25

Environment variables related to database
Set the ODBC information file
Set the database type linkages software(16)

@ODBC_Inf
@SQL_CLI

15
16

Other environment variables
Set if the Run-time Environment Setup window is used
Set the function key for screen handling
Set FCB control statements

@EnvSetWindow
TERMINATOR
FCBxxxx

10
30
31

Chapter 5. Executing Programs 131

1 @GOPT (Set Run-time Options)

@GOPT= list of run-time options

Specify run-time options as a list of run-time options. For the
format of the run-time options, see “Format of Run-time
Options.” For example:

@GOPT=r20 c20

2 @MGPRM (Set the GS-series Format Run-time Parameter)

@MGPRM= "string of run-time parameter"

Specify a string passed from the program in quotation marks (").
The specified string is passed to other programs in the same
manner as the program is executed on the system of the GS-
Series.

For more information about the GS-Series format run-time
parameter, see Appendix I, ”GS-series Function Comparison.”
For example:

@MGPRM="A2042CDE"

3 @IconDLL (Set the DLL name of an Icon Resource)

@IconDLL= DLL-name of icon resource

Specify the DLL name of an icon resource if no icon resource is
included in the executable file. For using an icon provided by
COBOL85, also set the following file:

- F3BIICON.DLL

132 Chapter 5. Executing Programs

4 @IconName (Set the Identifier of an Icon Resource)

@IconName= icon resource identifier

Specify the identifier of an icon resource when changing the icon.
COBOL85 provides "COB85EXE". SDK is required when you
create icons.

5 @ScrnSize (Set the Size of the Logical Screen for Screen Handling)

@ScrnSize=[{(columns, lineage) | (80, 24)}]

Specify the logical screen size of the window used by the screen
handling function. Specify columns and lineage in the range
from 1 to 999. If (columns + 1) * lineage exceeds 16250, an error
occurs upon execution of the program.

6 @MessOutFile (Set the Message Output File)

@MessOutFile= file-name

Specify the name of the file containing the contents displayed in
the message box as file name. When a file name is specified, no
message box is displayed.

7 @CnslWinSize (Set the Size of the Console Window)

@CnslWinSize=[{(columns, lineage) | (80, 24)}]

Specify the size of the console window used for the
ACCEPT/DISPLAY function. Specify the number of columns
and lines in the range from 1 to 999. The minimum and
maximum values of the window size are the system values. If a

Chapter 5. Executing Programs 133

value outside the system value range is specified, it is adjusted to
the system minimum or maximum value.

8 @CnslBufLine (Set the Buffer Count for the Console Window)

@CnslBufLine=[{buffer-lines | 100}]

Specify the number of buffers for the console window used by
the ACCEPT/DISPLAY function. Specify buffer lines in the
range from 1 to 9999.

If (console window columns + 1) * (buffer lines) exceeds 65000,
the specified value is decreased. For example, buffer-lines can be
up to 802 when the console window columns is 80; and 706 when
91.

9 @WinCloseMsg (Set a Display Message When the Window Close)

@WinCloseMsg={ON | OFF}

Specify whether a confirmation message is displayed (ON) or not
(OFF) when the console window used by the
ACCEPT/DISPLAY function or the window used by the screen
handling function closes.

10 @EnvSetWindow (Set if Run-time Environment Setup Window is
Used)

@EnvSetWindow=[{USE | UNUSE}]

Specify whether the Run-time Environment Setup window is
displayed (USE) or not (UNUSE) when a program is executed. To
change to USE once UNUSE is set, modify the contents of the
initialization file.

134 Chapter 5. Executing Programs

11 @AllFileExclusive (Set Exclusive Control of Files)

@AllFileExclusive={YES | NO}

Specify whether all files are exclusively controlled (YES) or not
(NO) when a program is executed. When YES is selected, files
used by the program cannot be accessed from any other program
(open error). File exclusive control can reduce file access time.

12 @CnslFont (Set the Console Window Font)

@CnslFont= (font-name, font-size)

Specify the font of the console window used for the
ACCEPT/DISPLAY function.

13 @ScrnFont (Set the Font Used for Screen Handling)

@ScrnFont= (font-name, font-size)

Specify the font used for screen handling.

14 @PrinterFontName (Set the Font Used for Print Files)

@PrinterFontName= (Minchou-font-name, Gothic-font-name)

Specify the font used for print files.

• Specify the printer font name using up to 32 single-byte
alphanumeric characters.

• Spaces before and after the printer font name are included in
the printer font name.

− Minchou font name: Specify the font name used for
printing the data item that is specified MINCHOU or

Chapter 5. Executing Programs 135

MINCHOU-HANKAKU font in a PRINTING MODE
clause. If omitted, "CourierNew" is assumed.

− Gothic font name: Specify the font name used for printing
the data item that is specified G, GOTHIC or GOTHIC-
HANKAKU font in a PRINTING MODE clause. If
omitted, "CourierNew" is assumed.

15 @ODBC_Inf (Set the ODBC Information File)

@ODBC_Inf= ODBC-information-file-name

Specify the name of the file containing information required by
the run-time system to use ODBC. Information in this file is
mainly used to connect the client and server (with the
CONNECT statement).

16 @SQL_CLI (Set the Type of Database Linkage Software) (16)

@SQL_CLI= database-linkage-software-name

Specify the linkage software name.

• RDB2 When the linkage software is RDBII Esql-COBOL

This environment variable is used only when “RDBII Esql-COBOL” is specified as
the database access mode. (It is specified either at installation or within P-STAFF).

136 Chapter 5. Executing Programs

17 @CBR_CIINF (Set the Logical Destination Definition File)

@CBR_CIINF= definition-file-name

Specify the name of the file containing the logical destination
definition when using the simplified inter-application
communication facility.

18 @CBR_ENTRYFILE (Set the Entry Information File) (32)

@CBR_ENTRYFILE= entry information file-name

To specify entry information other than the entry description
section of the initialization file (COBOL85.CBR) create an entry
information file and specify it in the run-time environment
@CBR_ENTRYFILE entry. See “Entry Information.”

The order of precedence for entry information is as follows:

1. Specification in the Run-time Environment Setup window.

2. Specification in the initialization file.

3. Specification in the entry information file.

19 @CBR_PSFILE_xxx (Set the Connected Product Name Used from
the Presentation File (by Destination))

@CBR_PSFILE_xxx= connected-product-name

For xxx, specify the destination name described in the
SYMBOLIC DESTINATION clause of the presentation file. xxx
can be one of the following: DSP/PRT/ACM/APL.

Chapter 5. Executing Programs 137

For the connected-product-name enter a string indicating the
associated product name to be used. The following table shows
the strings that can be specified.

Table 11. Supported @CBR_PSFILE strings

Specification in
SYMBOLIC
DESTINATION Clause

Product Used String Specified

DSP or SYMBOLIC
DESTINATION clause may

FORM RTS MEFT or omitted

be omitted MeFt/NET MEFTNET
PRT FORM RTS MEFT or omitted

MeFt/NET MEFTNET
ACM BS*NET ACM

RDB/7000
Server for Windows NT

ACM

APL IDCM IDCM or omitted

If a connected product name is specified as a file identifier in the
presentation file (refer to No. 26), the specified connected product
name is not effective.

If no connected product name is specified in the run-time
environment information and "ACM" is specified, an error
message is displayed during execution.

If the SYMBOLIC DESTINATION clause is omitted, always
specify "DSP."

20 @NoMessage (Set to Suppress Run-time Messages)

@NoMessage= YES

Suppresses the following run-time messages:

• Run-time messages other than U level

• Run-time messages not requiring operator response

138 Chapter 5. Executing Programs

To suppress the message displayed when the window closes,
specify "@WinCloseMsg=OFF" (refer to No. 9).

21 @CBR_PrintTextPosition (Specify method of calculating character
arrangement coordinates) (32)

 TYPE1
@CBR_PrintTextPosition=
 TYPE2

Specify the method of calculating coordinates (x,y) for arranging
printed characters when the FORMAT clause is omitted from the
file control entry.

An effective range of this specification is in the execution unit.

You specify whether (TYPE2) or not (TYPE1) to correct the
character arrangement coordinates.

• TYPE1

The x coordinate is calculated by dividing the DPI (dots per
inch) by the CPI (characters per inch) and then multiplying
the remainder (which is rounded down) by the line number.
The y coordinate is calculated by dividing the DPI by the LPI
(lines per inch) and then multiplying the remainder (which is
rounded down) by the line number. Note: Errors caused by
rounding down the remainder may cause the
PrintTextPosition to shift.

• TYPE2

The x coordinate is calculated by multiplying the line number
by a defined constant, then dividing by the CPI, then
multiplying by the DPI and then dividing the remainder by
the defined constant. The y coordinate is calculated by
multiplying the line number by a defined constant, then
dividing by the LPI, then multiplying by the DPI, and then
dividing the remainder by the defined constant. Note: As

Chapter 5. Executing Programs 139

with TYPE1, the remainder is rounded down. However, in
this case, the error is corrected every one inch and actual
PrintTextPosition does not shift.

22 @CBR_TextAlign (Specify alignment of print characters with either
top or bottom of line) (32)

 TOP
@CBR_TextAlign=
 BOTTOM

Specify the alignment of print characters in a line when the
FORMAT clause is omitted from the file control entry. When the
printer line height is greater than the character height, you can
specify alignment of the printed characters to the top of the line
or the bottom of the line.

23 @PRN_FormName_xxx (Specification of paper size) (32)

Dynamically specify the paper size to be used at run-time when
the FORMAT clause is omitted from the file control entry and the
I control record is used for printing (refer to “Using Print File 2”
in Chapter 8). In the I control record, the FSIZE field is set to a
user-defined string of three characters or less. The user-defined
string replaces "XXX".

Environment variable @PRN_FormName_xxx is set equal to the
string that defines the paper size. The values for the paper size
strings are found in the Windows system printer defaults.

Windows 95:

Use the information in the Paper tab of the printer Properties
dialog box to obtain paper sizes. Click on the Start button and
select SettingsàPrinters. Highlight the target printer and select
Properties from the File menu. Available paper sizes are shown

140 Chapter 5. Executing Programs

as icons. Click on an icon to display the specifications (following
Paper Size).

The following figure shows the printer Properties dialog box.

Figure 47. A Windows 95 printer Properties dialog box

Windows NT:

Use the information in the Forms dialog box to obtain paper
sizes. Activate Print Manager and select Forms from the Printer
menu. Available paper sizes are listed in the Forms on this

Chapter 5. Executing Programs 141

Computer list box. Click on a paper size and the specifications
are displayed in the [Form Description] Name edit box.

Note: The range of support differs between printers. Be sure to
confirm that the paper size is supported by the target printer
driver.

Figure 48. Windows NT Forms dialog box

For example:

Specification of SIZE field on I control record: ABC

Environment variable name after xxx is substituted:
@PRN_FormName_ABC

Association of environment variable name and paper size:
@PRN_FormName_ABC=Letter 8 ½ x 11 in

24 @DefaultFCB_Name (Specification of default FCB name)

@DefaultFCB_Name=Default FCB name

142 Chapter 5. Executing Programs

Specify the default FCB name to be used when the FCB name is
set to spaces in the I control record. The example below
demonstrates setting the default FCB name to "6LPI" which has a
line interval of 6 lines per inch, 66 lines per page, starts printing
at line 1, and is 11 inches long. The default FCB name in this
example is "FCB6LPI".

For example:

 @DefaultFCB_Name=FCB6LPI
 FCB6LPI=LPI((6,66)),CH1(1),SIZE(110) (*1)
 FCB8LPI=LPI((8,88)),CH1(1),SIZE(110)
 FCBA4LD=LPI((12)),CH1(1),FORM(A4,LAND) (*1)

(*1) Other FCB names are accessed by using the FCB field in the I
control record. Refer to “Using Print File 2” in Chapter 8 for
additional details.

25 @CBR_PrinterANK_Size (Specification of ANK character size) (32)

 TYPE-M
@CBR_PrinterANK_Size= TYPE-PC
 TYPE-G

Specify the ANK character size in the cases where the following
are NOT defined in the program:

• CHARACTER TYPE phrase

• PRINTING POSITION phrase

• print file FORMAT clause

Settings are:

• TYPE-M : Default ANK character size is brought close to the
size in the GS-series. Print size is 9.6 points.

• TYPE-PC : Default ANK character size is assumed to be a PC
standard size. Print size is 10.5 points.

Chapter 5. Executing Programs 143

• TYPE-G : Default ANK character size is brought close to the
size in the SX/G-series. Print size is 10.8 points.

If this environment variable is omitted, the print size is 7.0
points.

26 File identifier (Set the File Used by the Program)

File-identifier= file-name [,access-type or file-system-type]

Specify the file identifier entered in the ASSIGN clause of the
COBOL source program as the file identifier, and the name of the
file to be processed as file name.

This environment variable assigns the file in the program with
the file to be processed. Specify run-time environment
information in uppercase letters even if the file identifier was
defined in lowercase letters in the program.

For example:

• Description of the ASSIGN clause in the COBOL source
program

ASSIGN TO OUTFILE

• Name of file processed

F:\WORK.DAT

• Run-time environment information

OUTFILE=F:\WORK.DAT

Access type or file system type can be the following strings
depending on the type used.

• BSAM: Provides fast file processing

• RDM: Processes the RDM file
(RDB/7000 Server for Windows NT)

144 Chapter 5. Executing Programs

• BTRV: Processes the Btrieve file

27 File Identifier (Set the Information File Used by the Program)
(Set the Connected Product Name Used from the Presentation File
(by File))

File-identifier= [information-file-name] [,connected-product-
name]

Specify the file identifier entered in the ASSIGN clause of the
COBOL source program. When using FORM RTS, specify the
FORM RTS window information file name or printer information
file name used as data file name.

Specify a string indicating the connected product name actually
used as the connected product name (refer to No. 20). If omitted,
the value specified in @CBR_PSFILE_xxx is effective. If the
connected product name in the run-time environment
information is also omitted, the default destination in the
presentation file is assumed.

Specify run-time environment information in uppercase letters
even if the file identifier was entered in lowercase letters in
programs.

For example:

• Description of the ASSIGN clause in the COBOL source
program

ASSIGN TO GS-DSPFILE

• SYMBOLIC DESTINATION clause

SYMBOLIC DESTINATION IS "DSP"

• Name of file data actually used

F:\WORK.WRC

• Connected product actually used

Chapter 5. Executing Programs 145

FORM RTS

• Run-time environment information

DSPFILE=F:\WORK.WRC,MEFT

28 SYSIN Access Name (Set the Input File for the ACCEPT/DISPLAY
Function)

SYSIN-access-name= file-name

Specify the environment variable name specified in the compiler
option SSIN as SYSIN access name. Specify the name of the file
used as the data input destination when the ACCEPT statement
of the ACCEPT/DISPLAY function is run.

For example:

• Compiler option SSIN

SSIN(INFILE)

• Name of input file of ACCEPT statement

A:\INDATA.TXT

• Run-time environment information

INFILE=A:\INDATA.TXT

29 SYSOUT Access Name (Set the Output File for the
ACCEPT/DISPLAY Function)

SYSOUT-access-name= file-name

Specify the environment variable name specified in the compiler
option SSOUT as SYSOUT access name. Specify the name of the
file used as the data output destination when the DISPLAY
statement of the ACCEPT/DISPLAY function is run.

146 Chapter 5. Executing Programs

For example:

• Compiler option SSOUT

SSOUT(OUTFILE)

• Name of output file of DISPLAY statement

A:\OUTDATA.TXT

• Run-time environment information

OUTFILE=A:\OUTDATA. TXT

30 TERMINATOR (Set the Function Keys for Screen Handling)

TERMINATOR= [!] keyword [[,[!] keyword] ...]

Specify the PF1 to PF24 keys in keywords in the form of PFmm -
PFnn (a range from mm to nn, where nn represents 01 to 24 and
01 to 09 equal to 1 to 9.) "!" indicates that the function keys
specified in the keyword are disabled as input.

For example:

TERMINATOR=PF1-PF3, !PF4-PF24

31 FCBxxxx (Set FCB Control Statements)

FCBxxxx= FCB-control-statement

Specify the FCB name specified in the I control record in xxxx
and an FCB control statement in FCB control statement. For the
format of the FCB control statement, refer to Appendix K, “FCB
Control Statement.”

Chapter 5. Executing Programs 147

32 FOVLDIR (Set the Directory Containing Form Overlay Patterns)

FOVLDIR=directory-name

Specify the directory containing form overlay patterns by using
an absolute path name. If omitted, no form overlay patterns are
printed. Only one directory can be specified in directory name.

33 OVD_SUFFIX (Set the Extension of the Form Overlay Pattern File)

OVD_SUFFIX= extension

Specify an extension string in extension if the default extension of
the form overlay pattern file "OVD" is not used. When the file
name has no extension, specify "None".

34 FOVLTYPE (Set the Format of the Form Overlay Pattern File)

FOVLTYPE= format

Specify the first four characters of the form overlay pattern file
name if they are not "KOL5" (default).

Entry Information

Information about program entry points is required only for
programs having dynamic program structure. Entry information
can be placed in either:

• The initialization file for execution (COBOL85.CBR).

• A file whose name is given in the @CBR_ENTRYFILE
environment variable.

148 Chapter 5. Executing Programs

See “Environment Variables” for details on the
@CBR_ENTRYFILE variable.

Entry Information for Separately Linked Subprograms

Subprogram-name=DLL-file-name

Relates the name used in the COBOL CALL statement to the
name of the DLL file containing the subprogram.

Entry statements are grouped under the tag:

[main-program.ENTRY]

For example:

Entry Information for Secondary Entry Points

When a subprogram contains multiple entry points, the
secondary entry points need to be associated with the primary
entry point. The format is:

Secondary-entry-name=Primary-entry-name

The secondary-entry-name is the name defined in the ENTRY
statement of the COBOL source program. The primary-entry-
name is the name defined in the PROGRAM-ID paragraph.

Chapter 5. Executing Programs 149

For example:

If entry information is not specified, the system adds the
extension DLL to the program name specified in the CALL
statement as the DLL file name.

Entry Information for Subprograms Linked in the Same DLL

When subprograms are linked together in a single DLL, the first
program name is mapped to the DLL file name (as documented
above), and the subsequent programs are mapped to the first
program. The format is:

Sub-program-name-2=Sub-program-name

Where sub-program-name is the PROGRAM-ID name of the first
program in the DLL, and sub-program-name-2 is the
PROGRAM-ID name of a subsequent program linked in the
same DLL.

150 Chapter 5. Executing Programs

For example:

Notes on Canceling Subprograms:

The DLL containing the program that is the target of the
CANCEL statement is deleted from the virtual memory space.

In the above example, if any of B1,B2, or B3 is specified in the
CANCEL statement, B.DLL is deleted from the virtual memory
space.

Note: Files opened in subprograms may not be closed if the
subprogram is not explicitly canceled (CANCEL). In these
circumstances you must make sure your programs close the
affected files before a CANCEL is performed. The following three
examples illustrate this concept.

Chapter 5. Executing Programs 151

Example 1: When a canceled subprogram does a static call.

Example 2: When a canceled subprogram is in a DLL containing
other subprograms.

152 Chapter 5. Executing Programs

Example 3: When a canceled subprogram does a dynamic call.

WINEXEC

WINEXEC is used for program execution. This section describes
the WINEXEC window. For further details on how to use the
window, refer to the online help.

Activating the WINEXEC Window (32)

In P-STAFF, select WINEXEC from the Tools menu to activate
the WINEXEC Window.

Chapter 5. Executing Programs 153

Figure 49. The WINEXEC window

The WINEXEC window contains the following elements:

Help

Access the P-STAFF online help.

Command Line edit box

Specify the name of the file to be executed.

Browse button

Click to select a file to be included in the link.

List list box

Displays a list of the most recently executed programs.

Delete button

Click to remove the selected file(s) from the List.

154 Chapter 5. Executing Programs

OK button

Click to start execution and close the WINEXEC window.

Cancel button

Click to close the WINEXEC window without performing an
execution.

Execute button

Click to start execution, and keep the WINEXEC window
open for further execution.

Activating the WINEXEC Window (16)

Activate the WINEXEC window for Windows 3.1 by one of the
following methods:

• Select WINEXEC from the Utilities menu of P-STAFF.

• Select WINEXEC.EXE in the File Manager directory window.

• Define WINEXEC.EXE as an icon, then double-click on the
icon.

• Select the Execute command from Program Manager or File
Manager, then enter the WINEXEC command in the proper
command form.

The following sections describe how to use the WINEXEC
window.

Entering a File Name

Enter the name of the file to execute in the Command Line edit
box using either of the following methods:

• Enter or use the Browse button to select the name of the file to
execute.

Chapter 5. Executing Programs 155

• Select the name of the file to execute from the List to re-
execute a program that was already executed.

The List displays up to the last ten files that were executed.

Starting and Quitting Execution

To start execution, click on the Execute button. After execution
starts, the system may display the Run-time Environment Setup
window for COBOL programs. Set information where necessary.

For details about setting run-time environment information, see
“Run-time Environment Setup Window (16).”

After execution is completed, click on the Cancel button in the
WINEXEC window to close the window.

Run-time Environment Setup Window (32)

The Run-time Environment Setup window is used to set run-
time environment information that is displayed when a COBOL
program is executed. The Run-time Environment Setup window
displays run-time environment information defined in the
initialization file as initial values.

Information set in the Run-time Environment Setup window can
also be saved in the initialization file. To prevent display of the
Run-time Environment Setup window at run-time, define
"@EnvSetWindow=UNUSE" in the initialization file.

Note: "UNUSE" must be in upper case.

156 Chapter 5. Executing Programs

Figure 50. The Run-time Environment Setup window (32)

The Run-time Environment Setup window contains the following
elements:

Command

Provides the functions available on the Set, Delete, Save and
OK buttons, and the option to configure the Console, Screen
and Printer fonts.

Section Selection

Switches the display between environment variables and
entry information.

Environment Setup

Provides access to lists of the current environment variables,
COBOL environment variables and printer names. Values
can be selected from these lists for inclusion in the
Environment Variables Information.

Chapter 5. Executing Programs 157

Help

Access the online help.

Environment Variables Information edit box

Information is entered and edited in this box then set into the
list of environment variables to be used for this execution.

List list box

Displays the environment variables that will be used in this
execution.

Set button

Click to register the contents of the edit box in the List.

Delete button

Click to remove the currently selected item(s) from the List.

Save button

Click to save the information in the List to the initialization
file (COBOL85.CBR) for use in multiple executions.

OK button

Click to continue execution.

Cancel button

Click to discontinue execution.

158 Chapter 5. Executing Programs

Setting Environment Variable Information

Environment information is set using the Environment Variables
Information edit box of the Run-time Environment Setup
window.

Adding Environment Variable Information

To add specified or new environment variables, use the
procedures that follow.

Adding Currently Set Environment Variables

1. Select Environment Variables from the Environment Setup
menu in the Run-time Environment Setup window. The
Environment Variables List dialog box is displayed.

Figure 51. The Environment Variables List dialog box

2. Select the environment variable to add from the list box, then
click on the Selection button. The selected variable is
displayed in the Environment Variables Information edit box.

3. If necessary, modify the contents of the selected variable.

Chapter 5. Executing Programs 159

4. Click on the Set button. The changed information is added to
the Environment Variables Information list box.

Adding New Environment Variables

1. Select Keyword from the Environment Setup menu in the
Run-time Environment Setup window. The COBOL
Environment Variables (Keywords) dialog box is displayed.

Figure 52. The COBOL Environment Variables (Keywords) dialog box

2. Select the environment variable to add from the list box, then
click on the Selection button. The selected information is
displayed in the Environment Variables Information edit box.

3. Complete the information required by the environment
variable.

4. Click on the Set button. The changed information is added to
the Environment Variables Information list box.

160 Chapter 5. Executing Programs

Changing Environment Variable Information

To change the environment variable information or environment
variables displayed in the Environment Variables Information list
box:

1. Select the environment variable information or environment
variables to change from the list box. The selected
information is displayed in the Environment Variables
Information edit box.

2. Change the contents.

3. Click on the Set button. The changed environment variable
information or environment variables are displayed in the
Environment Variables Information list box.

Deleting Environment Variable Information

To delete environment variable information or environment
variables from the Environment Variables Information list box:

1. Select the environment variable information or environment
variables to delete from the list box.

2. Click on the Delete button. The selected environment variable
information or environment variables are deleted from the
list box.

Setting Entry Information

Select Section Information from the Section Selection menu in the
Run-time Environment Setup window. The Entry Information
list box is displayed. Enter the required entry information and
add it to the List by clicking on the Set button.

Chapter 5. Executing Programs 161

Entry information can also be set without using the Run-time
Environment Setup window. Create an entry information file and
specify the entry information file name in the environment
variable @CBR_ENTRYFILE.

For the format, see “Format of Run-time Environment
Information.”

Saving to the Initialization File

When the Save button is clicked, the information in the list box is
saved in the initialization file. Saving in the initialization file
means that the same run-time environment information can be
used the next time the program is executed.

Saving modifies the existing information.

Setting Printers

When using a printer, printer information can be set. Select
Printer from the Environment Setup menu of the Run-time
Environment Setup window, then set required information in the
Printer Name Selection dialog box.

Figure 53. The Printer Name Selection dialog box

162 Chapter 5. Executing Programs

Exiting the Run-time Environment Setup Window

Click on the OK button to close the Run-time Environment Setup
window and start the program. Run-time environment
information set in the Run-time Environment Setup window is
effective for the program only if it is not saved in the
initialization file.

Run-time Environment Setup Window (16)

The Run-time Environment Setup window is used to set run-
time environment information that is displayed when a COBOL
program is executed. The Run-time Environment Setup window
displays run-time environment information defined in the
initialization file as initial values.

Contents set in the Run-time Environment Setup window can
also be saved in the initialization file.

To prevent display of the Run-time Environment Setup window
at run-time, define "@EnvSetWindow=UNUSE" in the
initialization file.

This section describes the Run-time Environment Setup window.
For details on the format of defined run-time environment
information, see “Format of Run-time Environment
Information.” For details about how to use the window, refer to
the online help.

Chapter 5. Executing Programs 163

Figure 54. The Run-time Environment Setup window (16)

You can select the operation or font from the Command menu.
The Section menu allows you to switch between environment
variable information and entry information.

Setting Environment Variable Information

Run-time environment variable information is set using the
Environment Variables Information edit box in the Run-time
Environment Setup window.

Adding Environment Variable Information

To set environment variable information not displayed in the list
box:

1. Directly enter run-time environment information in the edit
box.

2. Click on the Set button. The environment variables
information is added to the Environment Variables
Information list box.

164 Chapter 5. Executing Programs

Changing Environment Variable Information

To change run-time environment information displayed in the
Environment Variables Information list box:

1. Select the run-time environment information to change from
the list box. The selected information is displayed in the
Environment Variables Information edit box.

2. Change the contents.

3. Click on the Set button. The changed run-time environment
information is displayed in the list box.

Deleting Environment Variable Information

To delete run-time environment information displayed in the
Environment Variables Information list box:

1. Select the run-time environment information to delete from
the list box .

2. Click on the Delete button. The selected run-time
environment information is deleted from the list box.

Setting Entry Information

Select Section Information from the Section menu in the Run-time
Environment Setup window. The Entry Information list box is
displayed in the window. Select the required entry information.

Chapter 5. Executing Programs 165

Figure 55. The Run-time Environment Setup window with changed Entry
Information

Saving to the Initialization File

Click on the Save button to save current information (information
displayed in the list box) in the initialization file. Because
information is saved in the initialization file, the same run-time
environment information can be used when executing the
program at another time.

Saving modifies the existing information.

Exiting from the Run-time Environment Setup Window

Clicking on the Run button causes the system to close the Run-
time Environment Setup window and start executing the
program. Run-time environment information set in the Run-time
Environment Setup window is effective for the program only if it
is not saved in the initialization file.

166 Chapter 5. Executing Programs

Format of Run-time Options

Run-time options specify information or operations to COBOL
programs at run-time.

Define run-time options depending on the functions used in the
COBOL program or the options specified when compiling the
COBOL source program. Run-time options can be entered:

• in the text editor (Windows 95)

• in the control panel system (Windows NT)

• in the initialization file

• in the Run-time Environment Setup window

• or from the command line

The following table lists the available functions and formats of
the run-time options. When multiple run-time options are
defined, they must be delimited by a comma (,).

Table 12. Run-time options

Function Format
Set the number of trace data [r count]
Set the process count at error
detection

[c count | noc]

Set the external switch value [s value]

[r COUNT]

Set this option to change the amount of trace information
produced by the TRACE function. Specify the amount of trace
information in the range from 1 to 999999.

This option is effective in programs defined with the -Dr option
or the compiler option TRACE during compilation.

Chapter 5. Executing Programs 167

[c COUNT | NOC]

Set this option to change the process when an error is detected by
the CHECK function. Specify the process count in the range from
9 to 999999.

A value of 0 assumes no limit. A value of noc suppresses the
CHECK function.

This option is effective only in the program defined with the -Dk
option or the compiler option CHECK during compilation.

[s VALUE]

Set this option to set a value for external SWITCH-0 to SWITCH-
7, specified in the SPECIAL-NAMES paragraph in the COBOL
program. Enter eight consecutive switch values from SWITCH-0
sequentially.

The values can be 0 or 1. If omitted, "S00000000" is assumed.

SWITCH-8 is equivalent to SWITCH-0. When SWITCH-8 is used,
therefore, the switch values correspond to SWITCH-8, SWITCH-1
to SWITCH-7 from the left.

168 Chapter 5. Executing Programs

Chapter 6. Project Management

This chapter describes the project management function, details
resources needed for the function, and explains procedures for
using it. Additionally, this chapter describes the project window.

170 Chapter 6. Project Management Function

What is the Project Management Function?

This section outlines the project management function.

PROGRAMMING-STAFF provides a project management
function for COBOL85 application development and
maintenance. The project management function manages target
COBOL85 applications consisting of multiple files (COBOL
source programs and libraries) as a single project.

Information on dependent files is stored in the project file, and
the compiler and linker options are saved in the option file. If the
project file or option file managed under the project is updated,
the project management function can automatically recompile
and relink files dependent on the updated file. This operation is
called "building" or "making".

The project manager can also recompile and relink all programs
registered in the project to renew applications, called
"rebuilding".

Use the project management function:

• To process all steps from compilation to execution of a
program in one operation

• To call a subprogram or use a program library

Sample programs using the project management function are
provided with COBOL85. For compiling, linking, and executing
sample programs using the project management function, refer
to “Getting Started with Fujitsu COBOL.”

Chapter 6. Project Management Function 171

Resources Required for Project
Management

Project management uses the following files:

Figure 56. Files used by the Project Management function

172 Chapter 6. Project Management Function

Table 13. Files used by the Project Management function

File Contents File Name
Format

I/O Condition to Use or Create

1 Information for
project management
- Dependent files

project-
name.PRJ

I Information saved in the project file is
referenced for building or rebuilding

- Target-names
- Source-file-names
- Library-names
- Other-required file-
 names

O This file must be created for project
management

2 Compiler options project-
name.CBI

I Used to compile source programs
during building or rebuilding

O Created when compiler options are set
by project management

3 Linker options project-
name.LNI

I Used to link object programs during
building or rebuilding

O Created automatically for project
management

4 COBOL source
program

optional-
name.COB

I Used to compile source programs
during building or rebuilding

5 Library text library-text-
name.CBL

I Used to compile source programs
during building or rebuilding

6 Standard libraries
(object code libraries)

optional-
name.LIB

I Used to link object programs during
building or rebuilding

7 Module definition
statement (required
for subprograms)

target-
name.DEF

I Required to link during building or
rebuilding

Required to create the import library or
DLL during building or rebuilding

O Created automatically if omitted
8 Object program source-file-

name.OBJ
I Used to link object programs during

building or rebuilding
O Created when source programs are

compiled successfully

Chapter 6. Project Management Function 173

Table 13. Files used by the Project Management function (cont.)

File Contents File Name
Format

I/O Condition to Use or Create

9 Import library target-name.LIB I Used to create an executable file saving
the dynamic link structure

O Created when building or rebuilding
10 Dynamic link

library(DLL)
target-
name.DLL

I Used to create an executable program
with a dynamic link structure

O Created when building or rebuilding
11 Executable program target-

name.EXE
O Created when building or rebuilding

Project Management Procedures

This section describes the procedures for project management.

1. Select Open from the Project menu in the P-STAFF window.
The Open Project dialog box is displayed.

2. Enter the project file name. See “Creating the Project File.” To
create a new project file, the Target Files dialog box is
displayed. If an existing project file is opened, the Project
window appears. To change project information, select a
button in the Project window. See “Project Window.”

3. Register the target file name to be created by the project then
click on the OK button. See “Registering Target Files.” The
Dependent Files dialog box is displayed.

4. Register a source program managed under the project. See
“Registering Source Files.”

5. Select the main program from source programs registered in
Step 4. See “Setting the Main Program.” If you are creating a
DLL, do not select a main program.

6. Register libraries. See “Registering Library Files.”

174 Chapter 6. Project Management Function

7. Register any other required files. See “Registering Other
Required Files.”

8. End registration. After all registration has been completed,
click on the OK button in the Dependent Files dialog box.
Registered file names are displayed in the Project window.

9. Set compiler options. See “Setting Compiler Options.”

10. Set linker options. See “Setting Linker Options.”

11. Build or rebuild the project. See “Building and Rebuilding the
Project.”

12. If an error is detected, modify the file contents. The contents
of the files registered to a program (COBOL source programs,
library text, and module definition statements) can be
modified by using an editor. Double-clicking on a file name
displayed in the Project window opens the P-STAFF editor
edit screen. See “Modifying File Contents.”

13. Execute the program. Click on the Execute button to execute
the created application program from the Project window.
See “Executing Application Programs.”

Chapter 6. Project Management Function 175

Project Window

The Project window is displayed when the project file is opened.
In the Project window, you can:

• Edit the project file (Register files, set compiler options, and
set linker options)

• Build and rebuild the project

• Edit registered files

• Execute created application programs

Figure 57. The Project window

File names registered in the project are displayed. Each file is
marked with a small icon that indicates its designated category.

176 Chapter 6. Project Management Function

The Project Window contains the following elements:

Files button

Edit the dependent files list.

Compiler Options button

Display, enter and edit the compiler options.

Linker Options button

View and edit the linker options.

Build button

Start a build of all the programs in the project.

Rebuild button

Start a rebuild of all the programs in the project.

Execute button

Start an execution of the project program.

Creating the Project File

The project file registers information for project management.
One project file is required per project. To create the project file:

1. Start P-STAFF. The P-STAFF window is displayed.

2. Select Open from the Project menu. The Open Project dialog
box is displayed.

3. Enter the name of project file in the File Name edit box.

4. Click on the OK button. The project file is created. After
creation, the Target Files dialog box automatically appears to
enter the target name. After creating the project file, register
the files.

Set project-name.PRJ as the project file name.

Chapter 6. Project Management Function 177

Registering Files

For project management, files managed under the project must
be registered. Information on registered files is saved in the
project file. Register the following files for the project:

• Target file

• Source files

• Library files

• Other required files

Registering Target Files

Target files are registered in the Target Files dialog box. Multiple
target files can be registered. To register target files:

1. When a new project is created, create the project file, and the
Target Files dialog box is displayed with project-name.EXE
displayed in the File edit box.

For an existing project file, select the Files button in the
Project window. The Dependent Files dialog box is displayed.
Click on the Set button and the Target Files dialog box is
displayed.

178 Chapter 6. Project Management Function

Figure 58. The Target Files dialog box

2. Enter a name in the File edit box and click on the Add button.
To update, select a target name to update from the Target
Files list box, enter the file name in the File edit box, and click
on the Update button.

3. Repeat Step 2 until all target files have been registered.

4. After all target files have been registered, click on the OK
button. The Dependent Files dialog box is displayed.

Registering Source Files

Source files are registered in the Dependent Files dialog box. To
register source files:

1. For a new project, click on the OK button in the Target Files
dialog box. For an existing project file, click on the Files
button on the Project window.

Chapter 6. Project Management Function 179

Figure 59. The Dependent Files dialog box

2. Select a file from Targets.

3. Click on the Browse button; the Browse Files dialog box is
displayed and you can select the source files required for the
target.

4. Click on the OK button. The selected source file is displayed
in the File edit box of the Dependent Files dialog box.

5. Click on the Add button. The selected source file is added to
the Dependent Files list box.

6. When the added source file is the main program, set the main
program. See “Setting the Main Program.”

7. Repeat Steps 2 to 6 for all targets.

180 Chapter 6. Project Management Function

Setting the Main Program

When the source file registered is the main program, the file
must be set as the main program. To set the main program, select
the file to be used as the main program from the files in the
Dependent Files list box, then click on the Main Program button.
The small icon next to the selected file turns red.

Registering Library Files

Source file libraries are registered in the Library Files dialog box.
To register a library file:

1. Select the source file of the program defining the library from
the Dependent Files list box of the Dependent Files dialog
box.

2. Click on the Libraries button. The Library Files dialog box is
displayed.

Chapter 6. Project Management Function 181

Figure 60. The Library Files dialog box

3. Click on the Browse button, the Browse Files dialog box is
displayed. Select the library required by the dependent
source file selected in Step 1.

4. Click on the OK button. The library file name is displayed in
the File edit box of the Library Files dialog box.

5. Click on the Add button. The library file name is added to the
Library Files list box.

6. After all library files are registered, click on the OK button.
The Dependent Files dialog box is redisplayed.

7. Repeat Steps 1 to 6 for all source programs using the library.

182 Chapter 6. Project Management Function

Registering Other Required Files

Other required files are registered in the Dependent Files dialog
box. The file selection process in the Dependent Files dialog box
is the same as for source files.

Register required files to the project after determining the type of
link and program structure.

The following files can be registered to the project:

• Module definition file

Required when creating a DLL. See “Creating the Module
Definition File.”

• Object file

Object files created in COBOL or other language can be
specified.

• Import library

An import library created by the project is required when
executable programs have a dynamic link structure. The
import library must have the name DLL-name.LIB. When a
DLL is created, an import library (target-name.LIB) is created.
If this file already exists, the existing file is replaced with a
new one.

• Other libraries

Other libraries (excluding libraries provided by COBOL85)
can be specified.

Quitting Registration

After registration is completed, click on the OK button in the
Dependent Files dialog box. The Dependent Files dialog box

Chapter 6. Project Management Function 183

closes; control is then returned to the project window. The Project
window then displays all registered files by target.

• The Project window is displayed outside the P-STAFF
window. (32)

• The Project window is displayed inside the P-STAFF window.
(16)

Figure 61. The Project window

Setting Compiler Options

Compiler options are set before compiling source files managed
under the project. Saved compiler options are saved in the option
file (project-name.CBI). To set compiler options:

1. Click on the Compiler Options button on the Project window.
The Compiler Options dialog box is displayed. Refer to
“Compiler Options Dialog Box” in Chapter 3 for more details.

2. Set the required information.

3. Click on the OK button.

184 Chapter 6. Project Management Function

Figure 62. The Compiler Options dialog box

In this example, the compiler option MAIN is not effective even
when specified because MAIN in the main program takes
precedence.

When using libraries, always set the compiler option LIB.

The same compiler option must be set for all registered targets.

Compiler options set here are effective in the project only. These
compiler options are not effective when programs are compiled
from the WINCOB window.

Chapter 6. Project Management Function 185

Setting Linker Options

Different linker option screens are provided for Windows
95/Windows NT and Windows 3.1. For details on the Linker
Options dialog box, refer to “Setting Linker Options” in Chapter
4.

The linker options are saved in the option file (project-
name.LNI).

1. Click on the Linker Options button on the Project window.
The Linker Options dialog box is displayed.

2. Set the required information.

3. Click on the OK button.

When the compiler option TEST is specified, linker options are
automatically set. In this case, linker options for debugging need
not be set. (32)

Creating the Module Definition File

The module definition file can be created by building or
rebuilding the project. The procedures to follow differ depending
on whether you are using Windows 95/Windows NT and
Windows 3.1.

Module Definition File (32)

The module definition file is required to create the import library.
To create the module definition file templates:

1. Select Create Module-Definition Files from the Project menu
in the P-STAFF window.

186 Chapter 6. Project Management Function

2. Build or rebuild the project. A module definition file having
the DLL-name.DEF is created in the same folder as DLL and
is added to the project file.

Assign the name target-name.DEF to module definition files.

The EXPORTS module definition statement in the DLL is
automatically set with the file name of the source file and object
file depending on the target excluding their extension. If the
program identifier differs from the file name, modify the value of
EXPORTS.

Module Definition File (16)

The module definition file used under Windows 3.1 is required
for linking. The template for a module definition file can be
created when using the project. To create the module definition
file:

1. Select Create Module-Definition Files from the Project menu
in the P-STAFF window.

2. Select Template of Module-Definition File from the Project
menu in the P-STAFF window.

3. Select the target as EXE or DLL. A dialog for creating
templates appears.

4. Set the required information.

5. Build or rebuild the project. A module definition file
containing the contents specified in Step 4 and with a target-
name.DEF is added to the project file.

Assign the name target-name.DEF to module definition files.

The EXPORTS module definition statement in DLL is
automatically set with the file name of the source file and object
file depending on the target excluding their extension. If the

Chapter 6. Project Management Function 187

program identifier differs from the file name, modify the value of
EXPORTS.

Building and Rebuilding the Project

You must either build or rebuild the project when any file
registered to the project is updated, or when you change
compiler or linker options.

To build or rebuild the project, click on the Build or Rebuild
button in the Project window. Compile errors can be corrected by
jumping to the editor from the message window.

The following table lists system processing executed with Build.
Rebuilding means that the system recompiles and relinks all
registered programs.

Table 14. Build processing

Update Contents Building
COBOL source program 1) Recompile the updated program

2) Relink dependent on the updated
Library file 1) Recompile all programs defining the

 library
2) Relink all programs dependent on the
 programs recompiled in 1)

Compiler option Recompile and relink all programs
Linker option Relink all programs

Modifying File Contents

Contents of files registered to programs (COBOL source
programs, library text, and module definition statements) can be
modified by using an editor.

To open the editor, double-click on a file name displayed in the
Project window.

Refer to “Using the P-STAFF Editor” in Chapter 3.

188 Chapter 6. Project Management Function

Executing Application Programs

To execute created application programs from the Project
window:

1. Select an application to execute. When multiple applications
are created, select the appropriate application from the
project window.

2. When a run-time parameter is defined, select Argument at
Execution from the Project menu in the P-STAFF window,
then enter the parameter in the edit box.

3. Click on the Execute button. If the program is a COBOL
application, the Run-time Environment Setup window may
be displayed. Set the required information and start
execution. Refer to “Run-time Environment Setup Window”
in Chapter 5.

Chapter 7. File Processing

This chapter explains how to read and write data files. Among
the topics covered in Chapter 7 are file organization types, using
record and line sequential files, using relative and indexed files,
error processing, file processing, and the COBOL85 FILE
UTILITY.

190 Chapter 7. File Processing

File Organization Types

This section explains file organization types and characteristics,
and details how to design records and process files.

File Organization Types and Characteristics

The following files can be processed by using sequential, relative,
and indexed file functions:

Table 15. File types

Sequential file function Record sequential files
Line sequential files
Print files

Relative file function Relative files
Indexed file function Indexed files

The following table lists the characteristics of each file.

Table 16. File organization types and characteristics

File Types Record-
Sequential
File

Line-
Sequential
File

Print File Relative File Indexed File

Record
processing

Record storage sequence Relative
record
number

Record key
value

Usable data
medium

Hard disk
Floppy disk

Hard disk
Floppy disk

Printer Hard disk
Floppy disk

Hard disk
Floppy disk

Usage
example

Saving data
Work file

Text file Printing data Work file Master file

File organization is determined when a file is generated, and
cannot be changed. Before generating a file, therefore, fully
understand the characteristics of the file and be careful to select
the file organization that most agrees with its use. Each file
organization is explained below.

Chapter 7. File Processing 191

Record Sequential Files

Figure 63. Record sequential files

In a record sequential file, records are read and updated in order,
starting with the first record in the file.

A record sequential file is the easiest to create and maintain.
Record sequential files are generally used to store data
sequentially and maintain a large amount of data.

192 Chapter 7. File Processing

Line Sequential Files

Figure 64. Line sequential files

Records can also be read from the first record in the physical
order they are placed in a line sequential file.

Line feed characters are used as record delimiters in a line
sequential file.

For example, a line sequential file can be used when handling a
file created by an editor.

Print Files

A print file is used for printing with the sequential file function;
there is no special file name for a print file. For details of a print
file, refer to Chapter 8, “Printing.”

Chapter 7. File Processing 193

Relative Files

Figure 65. Relative files

Records can be read and updated by specifying their relative
record numbers (the first record is addressed by relative record
number 1) in a relative file.

For example, a relative file can be used as a work file accessed by
using relative record numbers as key values.

194 Chapter 7. File Processing

Indexed Files

Figure 66. Indexed files

Records can be read and updated by specifying the values of
items (record keys) in an indexed file. Use an indexed file as a
master file when retrieving information associated with the
values of items in a record.

Designing Records

This section explains the types and characteristics of record
formats and the record keys of indexed files.

Chapter 7. File Processing 195

Record Formats

There are two types of record formats, fixed length and variable
length.

• Fixed length record

In a fixed length record, all records in a file contain the same
number of character positions.

• Variable length record

In a variable length record, records contain a varying number
of character positions. The record size is determined when a
record is placed in a file. Because each record can be written
with the required size, the variable length record format is
useful if you want to minimize the file capacity.

Record Keys of Indexed Files

When designing a record in an indexed file, a record key must be
determined. Multiple record keys can be specified for an item in
the record.

There are primary record keys (primary keys) and alternate
record keys (alternate keys). Records in the file are stored in the
ascending order of primary record keys.

Specifying a primary or alternate key determines which record is
processed in the file. In addition, records can be processed in
ascending order, starting from any record.

To process the same file with multiple record organization,
primary keys must be at the same position and of the same size
in each record organization.

In the variable length record format, the record key must be set
at a fixed position.

196 Chapter 7. File Processing

Processing Files

There are six types of file processing:

• File creation: Writes records to files.

• File extension: Writes records after the last record in a file.

• Record insertion: Writes records at arbitrary positions in
files.

• Record reference: Reads records from files.

• Record updating: Rewrites records in files.

• Record deletion: Deletes records from files.

File processing depends on the file access mode. There are three
types of access modes:

• Sequential access: Allows serial records to be processed in a
fixed order.

• Random access: Allows arbitrary records to be processed.

• Dynamic access: Allows records to be processed in sequential
and random access modes.

Chapter 7. File Processing 197

The following table indicates the processing available with each
file type.

Table 17. File organization types and processing

File Access Processing
Types Mode Creation Extension Insertion Reference Updating Deletion
Record
sequential
file

Sequential o o x o o x

Line
sequential
file

Sequential o o x o x x

Print file Sequential o o x x x x
Relative
file

Sequential o o x o o o

Indexed
file

Random o x o o o o

Dynamic o x o o o o
o: Can be processed. x: Cannot be processed.

Disable access by locking records in use. This is called exclusive
control of files. For details of exclusive control of files, see
“Exclusive Control of Files.”

198 Chapter 7. File Processing

Using Record Sequential Files

This section explains how to define record sequential files, and
process and define records.

Chapter 7. File Processing 199

Defining Record Sequential Files

This section explains the file definitions required to use record
sequential files in a COBOL program.

File Name and File-Reference-Identifier

Determine file names in conformance to the rules of COBOL
user-defined words, then write them in the SELECT clause.

Determine a file-reference-identifier, then write them in the
ASSIGN clause. For the file-reference-identifier, specify a file-
identifier, file-identifier-literal, data-name, or character string
DISK.

Use the file-reference-identifier to associate the file name
specified in the SELECT clause with the file of the actual input-
output medium.

How you associate the file name in the SELECT clause to the file
of the actual input-output medium depends on what is specified
for the file-reference-identifier.

The recommended method to determine what to specify for the
file-reference-identifier is:

• When the file name of the input-output medium is
determined at COBOL program generation and is not
subsequently changed, specify a file-identifier-literal or
character string DISK.

• When the file name of the actual input-output medium is
undetermined at COBOL program generation, or to
determine the file name at every program execution, specify a
file identifier.

200 Chapter 7. File Processing

• To determine the file name in a program, specify a data
name.

• If the file is temporary and will be unnecessary after the
program terminates, specify character string DISK.

Files can be processed at high speed in record sequential or line
sequential files. For the specification method, refer to Appendix
H, “High-speed File Processing.”

The following table lists description examples of SELECT and
ASSIGN clauses.

Table 18. Description examples of SELECT and ASSIGN clauses

Type of File-Reference-
Name

Description Example Remarks

File-identifier SELECT file-1
ASSIGN TO INFILE

Must be related to the actual
input-output medium at
program execution.

Data-name SELECT file-2
ASSIGN TO data name

The data name must be
defined in the WORKING-
STORAGE section in the
DATA DIVISION

File-identifier literal SELECT file-3
ASSIGN TO "c.dat"

DISK SELECT data1
ASSIGN TO DISK

The file name cannot be
specified with an absolute
path name

File Organization

Specify SEQUENTIAL in the ORGANIZATION clause. If the
ORGANIZATION clause is omitted, SEQUENTIAL is used as
the default.

Chapter 7. File Processing 201

Defining Record Sequential File Records

This section explains record formats, lengths, and organization.

Record Formats and Lengths

Record sequential files are either fixed or variable length.

The record length in the fixed length record format is the value
specified in the RECORD clause, or the maximum value in the
record description entries if the RECORD clause is omitted.

In the variable length record format, the length when a record is
written is the length of the record. The length of an output record
can be set for the data name written in DEPENDING ON data-
name in the RECORD clause.

You can obtain the record length when entering a record by
using this data name.

Record Organization

Define the attribute, position, and size of data in a record in
record description entries.

202 Chapter 7. File Processing

The following are examples of record definitions:

Processing Record Sequential Files

Use input-output statements to create, extend, reference, and
update record sequential files. This section explains the types of
input-output statements used in record sequential file
processing, and outlines each type of processing.

Types of Input-Output Statements

OPEN, CLOSE, READ, REWRITE, and WRITE statements are
used for input and output.

Chapter 7. File Processing 203

Using Input-Output Statements

The section provides explanation and examples of how to use
input-output statements.

OPEN and CLOSE Statements

Execute an OPEN statement only once, at the beginning of file
processing, and a CLOSE statement only once at the end of file
processing.

The open mode specified in the OPEN statement depends on the
kind of file processing. For example, for creation, use the OPEN
statement in the OUTPUT mode (OUTPUT specified).

Other Statements

To read records in a file, use a READ statement. To update
records in a file, use a REWRITE statement. To write records to a
file, use a WRITE statement.

Execution Order of Input-Output Statements

The execution order of input-output statements for creating,
extending, referencing, and updating are as follows:

For file creation:

OPEN OUTPUT file-name.
Editing-records
WRITE record-name
CLOSE file-name.

For file extension:

OPEN EXTEND file-name.
Editing-records
WRITE record-name
CLOSE file-name.

204 Chapter 7. File Processing

For record reference:

OPEN INPUT file-name.
READ file-name
CLOSE file-name.

For record updating:

OPEN I-O file-name.
READ file-name... .
Editing-records
REWRITE record-name
CLOSE file-name.

Processing Outline

Creating

To generate a record sequential file, open a file in OUTPUT
mode, then write records to the file with a WRITE statement.

If an attempt was made to generate a file that already exists, the
file is regenerated and the original contents are lost.

Extending

To extend a record sequential file, open a file in EXTEND mode,
then write records to the file with a WRITE statement. Records
are added to the end of the last record in the file.

Referencing

To refer to records, open the file in INPUT mode, then read
records in the file from the first record with a READ statement.

When OPTIONAL is specified in the SELECT clause in the file
control entry, the OPEN statement is successful even if the file
does not exist during execution of the OPEN statement, and the

Chapter 7. File Processing 205

at end condition is satisfied upon execution of the first READ
statement.

For information on the at end condition, see “Input-Output Error
Processing.”

Updating

To update records, open the file in I-O mode, read the records
from the file by using a READ statement, then rewrite them by
using a REWRITE statement.

When a REWRITE statement is executed, records read by the last
READ statement are updated.

The record length cannot be changed even in the variable-length
record format.

206 Chapter 7. File Processing

Using Line Sequential Files

This section explains how to define files and records, and process
files.

Defining Line Sequential Files

This section explains the file definitions required to use line
sequential files in a COBOL program.

Chapter 7. File Processing 207

File Name and File-Reference-Identifier

As with a record sequential file, specify a file name and file-
reference-identifier for a line sequential file. For more
information about specifying these items, see “Defining Record
Sequential Files.”

File Organization

Specify LINE SEQUENTIAL in the ORGANIZATION clause.

Defining Line Sequential File Records

This section explains record formats, lengths, and organization.

Record Formats and Lengths

The explanations of the record formats and lengths of line
sequential files are the same as for record sequential files. See
“Defining Record Sequential File Records” for more information.

Because a record is delimited by a line feed character in a line
sequential file, the end of a record is always a line feed character
regardless of the record format. A line feed character, however, is
not included in the record length.

Record Organization

Define the attribute, position, and size of record data in the
record description entries. You do not have to define line feed
characters in the record description entries because they are
added when records are written.

208 Chapter 7. File Processing

The following is an example of record definitions in the variable
length records format:

 Text character-string : Line feed character

A text character string can be up to 80 alphanumeric characters.

FD text-file
 RECORD IS VARYING IN SIZE FROM 1 TO 80 CHARACTERS
 DEPENDING ON record-length.
01 text-record.
 02 text-character-string.
 03 character-data PIC X OCCURS 1 TO 80 TIMES
 DEPENDING ON record-length.

:
:

WORKING-STORAGE SECTION.
01 record-length PIC 9(3) BINARY.

Processing Line Sequential Files

In a line sequential file processing, creation, extension, and
reference can be done with input-output statements. This section
explains the types and use of input-output statements in line
sequential file processing, and outlines the processing.

Using Input-Output Statements

OPEN, CLOSE, READ, and WRITE statements are used in line
sequential file processing.

OPEN and CLOSE Statements

Execute an OPEN statement only once at the beginning of file
processing, and a CLOSE statement only once at the end of file
processing.

Chapter 7. File Processing 209

The open mode specified in the OPEN statement depends on the
kind of file processing. For example, for creation, use the OPEN
statement in the OUTPUT mode (OUTPUT specified).

Other Statements

To read records in a file, use a READ statement. To write records
to a file, use a WRITE statement.

Execution Order of Input-Output Statements

The execution order of input-output statements for creating,
referencing, and extending are as follows.

For file creation:

OPEN OUTPUT file-name.
Editing-records
WRITE record-name
CLOSE file-name.

For file extension:

OPEN EXTEND file-name.
Editing-records
WRITE record-name
CLOSE file-name.

For record reference:

OPEN INPUT file-name.
READ file name
CLOSE file-name.

210 Chapter 7. File Processing

Processing Outline

Creating

To create a line sequential file, open a file in OUTPUT mode, then
write records to the file with a WRITE statement.

If an attempt was made to create a file that already exists, the file
is recreated and the original file are lost.

The contents of the record area and line feed character are written
at record write.

Extending

To extend a line sequential file, open a file in EXTEND mode,
then write records sequentially to the file with a WRITE
statement. Records are added to the end of the last record in the
file.

Referencing

To refer to records, open the file in INPUT mode, then read
records in the file from the first record by using a READ
statement.

When OPTIONAL is specified in the SELECT clause in the file
control entry, the OPEN statement is successful even if the file
does not exist, and the at end condition is satisfied upon
execution of the first READ statement. For information on the at
end condition, see “Input-Output Error Processing.”

If the size of a read record is greater than the record length, data
with the same length as the record length is set in the record area
when a READ statement is executed. The continuation of the

Chapter 7. File Processing 211

data of the same record is then set in the record area when the
next READ statement is executed. If the size of data to be set is
smaller than the record length, spaces are written to the
remaining portions of the record area.

Using Relative Files

This section explains how to define and process files, and how to
define records for relative files.

212 Chapter 7. File Processing

Defining Relative Files

This section explains file definitions required to use relative files
in a COBOL program.

Chapter 7. File Processing 213

File Name and File-Reference-Identifier

As with a record sequential file, specify a file name and file-
reference-identifier for a relative file. For more information about
how to specify these items, see “Defining Record Sequential
Files.”

File Organization

Specify RELATIVE in the ORGANIZATION clause.

Access Mode

Specify one of the following access modes in the ACCESS MODE
clause:

• Sequential access (SEQUENTIAL): Enables records to be
processed in ascending order of the relative record numbers
from the beginning of the file or a record with a specific
relative record number.

• Random access (RANDOM): Enables a record with a specific
relative record number to be processed.

• Dynamic access (DYNAMIC): Enables records to be
processed in sequential and random access modes.

214 Chapter 7. File Processing

Referencing records in sequential and random access modes is
shown below.

 [Sequential access] [Random access]

Relative Record Numbers

Specify the data name where a relative record number is entered
in the RELATIVE KEY clause. In sequential access, this clause
can be omitted.

The relative record number of the record for this data name is
entered when the record is read, and the relative record number
of the record to be written is entered when the record is written.

This data name must be defined as an unsigned numeric item in
the WORKING-STORAGE section.

Defining Relative File Records

This section explains record formats, lengths, and organization.

Record Formats and Lengths

The explanations of the record formats and lengths of relative
files are the same as for record sequential files. See “Defining
Record Sequential File Records” for more information.

Chapter 7. File Processing 215

Record Organization

Define the attribute, position, and size of record data in the
record description entries. You do not have to define the area to
set the relative record number.

Processing Relative Files

In relative file processing, creation, extension, insertion,
reference, updating, and deletion is done with input-output
statements. This section explains the types of input-output
statements used in relative file processing, and outlines each type
of processing.

Using Input-Output Statements

OPEN, CLOSE, DELETE, READ, START, REWRITE, and WRITE
statements are used for input and output in relative file
processing.

OPEN and CLOSE Statements

Execute an OPEN statement only once at the beginning of file
processing and a CLOSE statement only once at the end of file
processing.

216 Chapter 7. File Processing

The open mode specified in the OPEN statement depends on the
kind of file processing. For example, for creation, use the OPEN
statement in the OUTPUT mode (OUTPUT specified).

Other Statements

To delete records from a file, use a DELETE statement. To read
records in a file, use a READ statement. To indicate a record for
which processing is to be started, use a START statement.

To update records in a file, use a REWRITE statement. To write
records to a file, use a WRITE statement.

Chapter 7. File Processing 217

Execution Order of Input-Output Statements

218 Chapter 7. File Processing

Enter the relative record number for the data-name specified in
the RELATIVE KEY clause, for example, MOVE 1 to data-name.

The execution orders of input-output statements for creation,
extension, insertion, reference, updating, and deletion are as
follows:

Processing Outline

Creating (Sequential, Random, and Dynamic)

To create a relative file, open a file in OUTPUT mode, then write
records to the file with a WRITE statement. Records are written
with the record length specified in the WRITE statement.

In sequential access, relative record numbers 1, 2, 3, ... are set in
the order the records are written.

In random or dynamic access, records are written at the positions
specified by the relative record numbers.

If an attempt is made to create a file that already exists, the file is
recreated and the original file is lost.

Extending (Sequential)

To extend a relative file, open a file in EXTEND mode, then write
records sequentially with a WRITE statement. When writing to
files in this mode, records are added to the end of the last record
in the file.

The relative record number of the record to be written is
incremented by one from the maximum relative record number
in the file.

The file can be extended only in sequential access mode.

Chapter 7. File Processing 219

Referencing (Sequential, Random, and Dynamic)

To refer to records, open the file in INPUT mode, then read
records with a READ statement.

In sequential access, specify the start position of the record to be
read with a START statement, then read records sequentially
from the specified record in order of the relative record numbers.

In random access, the record with the relative record number
specified at execution of the READ statement is read.

When OPTIONAL is specified in the SELECT clause in the file
control entry, the OPEN statement is successful even if the file
does not exist. The at end condition is satisfied with the
execution of the first READ statement. For information on the at
end condition, see “Input-Output Error Processing.”

If the record with the specified relative record number is not
found in random or dynamic access, the invalid key condition is
satisfied. For information on the invalid key condition, see
“Input-Output Error Processing.”

Updating (Sequential, Random, and Dynamic)

To update records, open the file in I-O mode.

In sequential access, read records with a READ statement, then
update them with a REWRITE statement. Executing the
REWRITE statement updates the records read by the last READ
statement.

In random access, specify the relative record number of the
record to be updated, then execute the REWRITE statement.

If the record with the specified relative record number is not
found in random or dynamic access, the invalid key condition is

220 Chapter 7. File Processing

satisfied. For information on the invalid key condition, see
“Input-Output Error Processing.”

The record length cannot be changed, even in the variable-length
record format.

Deleting (Sequential, Random, and Dynamic)

To delete records, open the file in I-O mode.

In sequential access, read records with a READ statement, then
delete them with a DELETE statement. Executing the DELETE
statement deletes the records read by the last READ statement.

In random access, specify the relative record number of the
record to be deleted, then execute the DELETE statement.

If the record with the specified relative record number is not
found in random or dynamic access, the invalid key condition is
satisfied. For information on the invalid key condition, see
“Input-Output Error Processing.”

Inserting (Random and Dynamic)

To insert records, open the file in I-O mode.

Specify the relative record number of the insertion position, then
execute a WRITE statement. The record is inserted at the position
of the specified relative record number.

If the record with the specified relative record number already
exists, the invalid key condition is satisfied. For information
about the invalid key condition, see “Input-Output Error
Processing.”

Chapter 7. File Processing 221

Using Indexed Files

This section explains how to define and process files, and define
records for indexed files.

222 Chapter 7. File Processing

Defining Indexed Files

This section explains the file definitions required to use indexed
files in a COBOL program.

File Name and File-Reference-Identifier

As with a record sequential file, specify a file name and file-
reference-identifier for an indexed file. For more information
about how to specify these items, see “Defining Record
Sequential Files.”

File Organization

Specify INDEXED in the ORGANIZATION clause.

Access Mode

Specify one of the following access modes in the ACCESS MODE
clause:

• Sequential access (SEQUENTIAL): Enables records to be
processed in ascending key order from the beginning of the
file or a record with a specific key.

• Random access (RANDOM): Enables a record with a specific
key to be processed.

• Dynamic access (DYNAMIC): Enables records to be
processed in sequential and random access modes.

Referencing records in sequential and random access modes is
shown in the following examples.

Chapter 7. File Processing 223

Sequential Access

Data is read sequentially from employee number 200001.

 Random Access

Data corresponding to employee number 200021 is fetched.

Primary and Alternate Keys

Keys are classified into primary record keys (primary keys) and
alternate record keys (alternate keys). The number of keys,
positions in records, and sizes are determined during file
creation, and cannot be changed once determined.

Records in the file are in logical ascending order of the primary
keys, and specific records can be selected with the primary key
values. When defining an indexed file, specify the name of a data
item as the primary key in the RECORD KEY clause.

KEY

224 Chapter 7. File Processing

As with the primary key, an alternate key is the information used
to select specific records in the file. Specify the name of a data
item to use as the alternate key in the ALTERNATE RECORD
KEY clause as required.

Multiple data items can be specified in the RECORD KEY and
ALTERNATE RECORD KEY clauses. When multiple data items
are specified in the RECORD KEY clause, the primary key
consists of these data items. Data items specified in the RECORD
KEY clause need not be contiguous.

Multiple records can have the same key value (duplicate key
value) by specifying DUPLICATES in the RECORD KEY and
ALTERNATE RECORD KEY clauses. An error occurs if the key
value is duplicated when DUPLICATES is not specified.

Defining Indexed File Records

This section explains record formats, lengths, and organization.

Record Formats and Lengths

The explanations of the record formats and lengths of indexed
files are the same as for record sequential files. See “Defining
Record Sequential File Records.”

Record Organization

Define the attributes, positions, and sizes of keys and data other
than keys in records in the record description entries.

To process an existing file, the number of items, item positions,
and sizes to be specified for the primary or alternate keys must
be equal to those defined at file creation. The specification order
and the number of primary keys must be the same as for the
alternate keys.

Chapter 7. File Processing 225

When writing two or more record description entries for a file,
write the primary key data item in only one of these record
description entries. The character position and size defining the
primary key are applied to other record description entries.

In the variable length records format, the key must be set at the
same fixed part (position from the beginning of the record is
always the same).

The following is an example of record definitions in the variable
length records format:

Primary key Alternate key

Employee
number

Full-name Section

6-digit number 20 characters Up to 32 characters

226 Chapter 7. File Processing

Processing Indexed Files

Use input-output statements to create, extend, insert, reference,
update, and delete indexed files. Some processing may not be
used, depending on the access mode.

This section explains the types and input-output statements used
in indexed file processing, and outlines each type of processing.

Using Input-Output Statements

OPEN, CLOSE, DELETE, READ, START, REWRITE, and WRITE
statements are used to process indexed files.

OPEN and CLOSE Statements

Execute an OPEN statement only once at the beginning of file
processing and a CLOSE statement only once at the end of file
processing.

The open mode specified in the OPEN statement depends on the
kind of file processing. For example, for creation, use the OPEN
statement in the OUTPUT mode (OUTPUT specified).

 Other Statements

To delete records from a file, use a DELETE statement. To read
records in a file, use a READ statement. To indicate a record for
which processing is to be started, use a START statement.

To update records in a file, use a REWRITE statement. To write
records to a file, use a WRITE statement.

Chapter 7. File Processing 227

Execution Order of Input-Output Statements

The execution order of input-output statements for creating,
extending, referencing, updating, deleting, and inserting are as
follows:

228 Chapter 7. File Processing

Processing Outline

Creating (Sequential, Random, and Dynamic)

To create an indexed file, open a file in the OUTPUT mode, and
write records to the file with a WRITE statement.

If an attempt is made to create a file that already exists, the file is
recreated and the original file is lost.

Before writing a record, the primary key value must be set. In
sequential access, records must be written so that the primary
keys are in ascending order.

The following tasks are useful for collecting data to create index
files:

• Create data with the editor, read the data with the line
sequential file function, then write it to an indexed file, as
shown in the following example.

Figure 67. Writing data to an indexed file

• With the screen handling functions (presentation file and
screen operation functions), enter data from the screen, then
write it to an indexed file, as shown in the following example.

Chapter 7. File Processing 229

Figure 68. Writing data from the screen to an indexed file

Extending (Sequential)

To extend an indexed file, open the file in EXTEND mode, then
write records sequentially. At this time, records are added to the
end of the last record in the file.

The file can be extended only in sequential access mode.

To edit the records to be written, the primary key values must be
in ascending order.

When DUPLICATES is not specified in the RECORD KEY clause
in the file control entry, the primary key value first processed
must be greater than the maximum primary key value in the file.

When DUPLICATES is specified, the primary key value first
processed must be equal to or greater than the maximum
primary key value in the file.

Referencing (Sequential, Random, and Dynamic)

To refer to records, open the file in INPUT mode, then read
records with a READ statement.

In sequential access, specify the start position of the record to be
read with a START statement. Then, start reading records from

230 Chapter 7. File Processing

the specified position in ascending order of the primary or
alternate key values.

In random access, the records to be read are determined by the
primary or alternate key values.

When OPTIONAL is specified in the SELECT clause in the file
control entry, the OPEN statement is successful even if the file
does not exist. The at end condition is satisfied with the
execution of the first READ statement.

For information about the at end condition, see “Input-Output
Error Processing.”

If the record with the specified key value is not found in
RANDOM or DYNAMIC access, the invalid key condition is
satisfied. For information on the invalid key condition, see
“Input-Output Error Processing.”

A START or READ statement can be executed by specifying
multiple keys.

Updating (Sequential, Random, and Dynamic)

To update records, open the file in I-O mode, then rewrite
records in the file.

In sequential access, records read with the last READ statement
are updated.

In random access, the primary key records with the specified key
values are updated.

If the record with the specified key value is not found in
RANDOM or DYNAMIC access, the invalid key condition is
satisfied. For information on the invalid key condition, see
“Input-Output Error Processing.”

The contents of primary keys cannot be changed. The contents of
alternate keys, however, can be changed.

Chapter 7. File Processing 231

Deleting (Sequential, Random, and Dynamic)

To delete records, open the file in I-O mode, then delete records
from the file.

In sequential access, records read with the last READ statement
are deleted.

In random access, the primary key records with the specified key
values are deleted.

If the record with the specified key value is not found in random
or dynamic access, the invalid key condition is satisfied. For
information about the invalid key condition, see “Input-Output
Error Processing.”

Inserting (Random and Dynamic)

To insert records, open the file in I-O mode, then insert records in
the file. The record insertion position is determined by the
primary key value.

When DUPLICATES is not specified in the RECORD KEY or
ALTERNATE RECORD KEY clause in the file control entry, and
the record with the specified key value already exists, the invalid
key condition is satisfied.

For information about the invalid key condition, see “Input-
Output Error Processing.”

232 Chapter 7. File Processing

Input-Output Error Processing

This section explains input-output error detection methods and
execution results if input-output errors occur.

The four input-output error detection methods are:

• AT END specification (detecting occurrence of the at end
condition)

• INVALID KEY specification (detecting occurrence of the
invalid key condition)

• FILE STATUS clause (detecting input-output errors by
checking I-O status)

• Error procedures (detecting input-output errors)

AT END Specification

The AT END condition occurs when all records in a file are read
sequentially and no next logical record exists in the file. To detect
occurrence of the at end condition, specify AT END in a READ
statement. With AT END specified, processing to be done at
occurrence of the at end condition can be written.

A coding example of a READ statement with AT END specified
is:

READ sequential-file AT END
GO TO at-end-processing

END-READ.

With the execution of the next READ statement after the last
record in the file is read, the at end condition occurs and the GO
TO statement is executed.

Chapter 7. File Processing 233

INVALID KEY Specification

In input-output processing with an indexed or relative file, an
input-output error occurs if no record with a specified key or
relative record number exists in the file. This is called an invalid
key condition.

To detect occurrence of the invalid key condition, specify
INVALID KEY in the READ, WRITE, REWRITE, START, and
DELETE statements. With INVALID KEY specified, processing
to be done upon the occurrence of an invalid key condition can
be written.

A coding example of a READ statement with INVALID KEY
specification is:

MOVE "Z" TO primary-key.
READ indexed-file INVALID KEY

GO TO invalid-key-processing
END-READ.

If no record with primary key value "Z" is present in the file, the
invalid key condition occurs and the GO TO statement is
executed.

FILE STATUS Clause

When a FILE STATUS clause is written in the file control entry,
the I-O status is posted to the data-name specified in the FILE
STATUS clause upon execution of the input-output statement. By
writing a statement (IF or EVALUATE statement) to check the
contents (I-O status value) of this data name, input-output errors
can be detected.

If no I-O status value is checked after the input-output statement,
program execution continues even if an input-output error
occurs. Subsequent operation is undefined.

234 Chapter 7. File Processing

For I-O status values to be posted, refer to Appendix B, “I-O
Status List.”

A coding example of a FILE STATUS clause is:

SELECT file-1.
 FILE STATUS IS input-output-status
 :
 :

WORKING-STORAGE SECTION.
 01 input-output-status PIC X(2).
 :
 :
OPEN file-1.
IF input-output-status NOT = "00"
 THEN GO TO open-error-processing.

If a file could not be opened, a value other than "00" is set for the
input-output value. The IF statement checks this value, and the
GO TO statement is executed.

Error Procedures

You specify error procedures by writing a USE AFTER
ERROR/EXCEPTION statement in Declaratives in the
PROCEDURE DIVISION.

Writing error procedures executes the processing written in the
error procedures if an input-output error occurs. After executing
error processing, control is passed to the statement immediately
after the input-output statement with which an input-output
error occurred. Thus, a statement indicating control of processing
of the file where an input-output error occurred must be written
immediately after the input-output statement.

Control is not passed to the error procedures in the following
cases:

• AT END is specified in the READ statement with which the
at end condition occurred

Chapter 7. File Processing 235

• INVALID KEY is specified in the input-output statement
with which the invalid key condition occurred

• An input-output statement is executed before the file is
opened (the open mode is specified)

Branch from error procedures to the PROCEDURE DIVISION
with the GO TO statement in the following cases:

• An input-output statement is executed for the file in which an
input-output error occurred

• Error procedures are re-executed before they are terminated

PROCEDURE DIVISION.
 DECLARATIVES.
 error-procedures SECTION.
USE AFTER ERROR PROCEDURE ON file-1.
 MOVE error-occurrence TO file-status. (1)

END DECLARATIVES.
:
:

 OPEN open-mode file-1.
 IF file-status = error-occurrence (2)
THEN GO TO open-error-processing.
:
:

If a file could not be opened, error procedures (MOVE statement
of (1)) are executed, and control is passed to the statement (IF
statement of (2)) immediately after the OPEN statement.

Input-Output Error Execution Results

The execution result when an input-output error occurs depends
on whether the AT END specification, INVALID KEY
specification, FILE STATUS clause, and error procedures are
written. The following table lists execution results when input-
output errors occur.

236 Chapter 7. File Processing

Table 19. Execution results when input-output errors occur

Error type With error procedures Without error procedures

With the FILE
STATUS
clause

Without the
FILE STATUS
clause

With the FILE
STATUS
clause

Without the
FILE STATUS
clause

AT END
condition or
INVALID KEY
condition

Detected by
using an
executed
input-output
statement with
AT END or
INVALID KEY
specified

The statement written for the AT END or INVALID KEY specification
is executed.

Detected by
using an
executed
input-output
statement
without AT
END or
INVALID KEY
specified

Error procedures are executed
immediately after the input-
output statement in which an
error occurred.

The statement
immediately
following an
input-output
statement (in
which an error
occurred) is
executed.

A U-level
message is
output and the
program
terminates
abnormally.

Other input-output errors An I-level
message is
output then
the statement
immediately
following an
input-output
statement (in
which an error
occurred) is
executed.

A U-level
message is
output and the
program
terminates
abnormally.

File Processing

This section explains file assignment, file processing results,
exclusive control of files, and methods for improving file
processing.

Chapter 7. File Processing 237

Assigning Files

The method of file input-output processing at program execution
is determined by the contents of the ASSIGN clause in the file
control entry. The relation between the contents of the ASSIGN
clause and files is explained below.

When Specifying a File Identifier in the ASSIGN Clause

Set the name of a file for input-output processing at program
execution with a file identifier as the run-time environment
information name. For details about how to set run-time
environment information, refer to “Setting Run-time
Environment Information” in Chapter 5.

The following is an example of setting run-time environment
information by using an initialization file.

When a lowercase file identifier is specified in the ASSIGN
clause:

• A compiler error occurs if a file is compiled with
compiler option NOALPHAL specified.

• When setting run-time environment information, use
uppercase letters.

238 Chapter 7. File Processing

If run-time environment information is left blank, a file
assignment error occurs.

When Specifying a Data Name in the ASSIGN Clause

Input-output processing is done for a file with the name specified
in the data name. For example:

When the file name specified in the program is a relative path
name, the file having the current directory name prefixed is
eligible for input-output processing.

If the data name is left blank, a file assignment error occurs.

Chapter 7. File Processing 239

When Writing a File-Identifier Literal in the ASSIGN Clause

Input-output processing is done for a file with the name written
as a file-identifier literal. For example:

When the file name written in the program is a relative path
name, the file having the current directory name prefixed is
eligible for input-output processing.

When Writing a Character String DISK in the ASSIGN Clause

Input-output processing is done for a file with the name specified
in the SELECT clause. For example:

240 Chapter 7. File Processing

Files under the current directory are eligible for input-output
processing.

Exclusive Control of Files

Disable access during file processing by setting the exclusive
mode for files or locking records in use. This is called exclusive
control of files.

This section explains the relationship between file processing and
exclusive control of files.

Setting Files in Exclusive Mode

When a file is opened in exclusive mode, other users cannot
access the file.

A file is opened in exclusive mode in the following cases:

• An OPEN statement is executed for a file with EXCLUSIVE
specified in the LOCK MODE clause in the file control entry.

• An OPEN statement in other than INPUT mode is executed
for a file without the LOCK MODE clause specified in the file
control entry.

• An OPEN statement with WITH LOCK specified is executed.

• An OPEN statement in the OUTPUT mode is executed.

Chapter 7. File Processing 241

The following is an example of exclusive control of files:

Figure 69. Exclusive control of a file

1. File DATA1 is opened in exclusive mode.

2. If an attempt is made to execute an OPEN statement for file
DATA1 that is already in use in exclusive mode by program
A, the attempt fails.

3. I-O status value "93" (error caused by exclusive control of
files) is set for the data name specified in the FILE STATUS
clause.

Locking Records

If records are locked, other users cannot lock them. To lock a
record, open the file containing the record in share mode.

A file is opened in share mode in the following cases:

• An OPEN statement without WITH LOCK specified in other
than OUTPUT mode is executed for a file with AUTOMATIC

242 Chapter 7. File Processing

or MANUAL specified in the LOCK MODE clause of the file
control entry.

• An OPEN statement in the INPUT mode is executed.

Files opened in share mode can be used by other users. If a file is
already in use in exclusive mode by another user, however, an
OPEN statement fails.

Records in a file opened in share mode are locked with the
execution of an input-output statement with exclusive control
specified.

Records are locked in the following cases:

• A file with AUTOMATIC specified in the LOCK MODE
clause in the file control entry is opened in I-O mode, then a
READ statement without WITH NO LOCK specified is
executed.

• A file with MANUAL specified in the LOCK MODE clause in
the file control entry is opened in I-O mode, then a READ
statement with WITH LOCK specified is executed.

Records are released from lock in the following cases:

• For a file with AUTOMATIC specified in the LOCK MODE
clause

− A READ, REWRITE, WRITE, DELETE, or START
statement is executed

− An UNLOCK statement is executed

− A CLOSE statement is executed

• For a file with MANUAL specified in the LOCK MODE
clause

− An UNLOCK statement is executed

− A CLOSE statement is executed

Chapter 7. File Processing 243

The following is an example of locking records.

Figure 70. Locking records

1. The file is opened in share mode.

2. The first record in the file is locked upon execution of a
READ statement.

3. The file is opened in share mode.

4. A READ statement for the locked record fails.

5. I-O status value "99" (error caused by locking records) is set
for the data name specified in the FILE STATUS clause.

244 Chapter 7. File Processing

File Processing Results

File processing generates new files or updates files. This section
explains file status when file processing is done.

• File creation: Generates a new file upon execution of an
OPEN statement. If a file with the same name already exists,
the file is regenerated and the original contents are lost.

• File extension: Extends an existing file upon execution of a
WRITE statement. If an attempt is made to extend a file not
existing at program execution (optional file), a new file is
generated upon execution of an OPEN statement.

• Record reference: Does not change the contents of the file.
With an optional file, the at end condition occurs with the
first READ statement.

• Record updating, deletion, and insertion: Changes the
contents of an existing file with the execution of a REWRITE,
DELETE, or WRITE statement. With an optional file, a new
file is generated with the execution of an OPEN statement.
Since no data exists in this file, however, the at end condition
occurs with the first READ statement.

When a program is terminated without executing a CLOSE
statement, files are closed unconditionally. If the unconditional
close fails, a message is output, and files become unusable even
though they are open.

A file can be assigned with the file identifier as a run-time
environment information name. If so, an input-output statement
is executed for the file assigned with the file identifier, even if the
file assignment destination is changed with the environment
variable operation function while the file is open.

When an OPEN statement is executed after the file assigned with
the file identifier is closed with a CLOSE statement, subsequent

Chapter 7. File Processing 245

input-output statements are executed for the file changed with
the environment variable operation function.

Therefore, use the OPEN statement to start the sequence of file
processing and the CLOSE statement to terminate the sequence.

If the area is insufficient for file creation, extension, record
updating, or insertion, subsequent operation for the file is
undefined. If an attempt is made to write records to the file when
the area is insufficient, how they are stored in the file is also
undefined.

When an indexed file is opened in OUTPUT, I-O, or EXTEND
mode, it may become unusable if the program terminates
abnormally before it is closed. Make backup copies before
executing programs that may terminate abnormally.

Files that became unusable can be recovered with the Recovery
command of the COBOL85 FILE UTILITY. A function having the
same feature as the above command can be called from an
application.

For more information, see “COBOL85 FILE UTILITY” and
Appendix L, “Indexed File Recovery.”

246 Chapter 7. File Processing

COBOL85 FILE UTILITY

This section explains the COBOL85 FILE UTILITY.

The COBOL85 FILE UTILITY allows you to use utility
commands to execute file processing that can be used with
COBOL85 file systems, without using COBOL applications. In
this section, files (record sequential, line sequential, relative, and
indexed files) handled by COBOL85 file systems are simply
called COBOL files.

With the COBOL85 FILE UTILITY, you can create COBOL files
based on data generated with text editors, and manipulate
COBOL files and records (such as display, edit, and sort).

Other operations for COBOL files include copying, moving, and
deleting files, converting file organization, and reorganizing,
recovering, and displaying attributes of indexed files. These
utilities can be easily operated by selecting menus in the
window.

Using the COBOL85 FILE UTILITY

This section explains how to use the COBOL85 FILE UTILITY.

 Setting Up Environments

1. Specify the name of the path containing the COBOL run-time
system for environment variable PATH.

2. Specify the directory to generate a temporary work file for
environment variable TEMP with a path name beginning
with a drive name. When the Recovery command is executed
with these utilities, a temporary work file (~UTYnnnn.TMP

Chapter 7. File Processing 247

(nnnn indicates alphanumeric characters)) of the same size as
the file to be processed is generated under the specified
directory.

3. Specify the directory to generate a sort work file for
environment variable BSORT_TMPDIR with a path name
beginning with a drive name. When the Sort command is
executed with these utilities, a temporary file
(~SRTnnnn.TMP (nnnn indicates alphanumeric characters)) is
generated under the specified directory. If environment
variable BSORT_TMPDIR is not specified, a sort work file is
generated under the directory specified by environment
variable TEMP.

 Activating the COBOL85 FILE UTILITY

Start the COBOL85 FILE UTILITY as follows:

Windows 95 and Windows NT:

• Select COBFUT32[File Utility] from the P-STAFF Tools menu

• Execute COBFUT32.EXE

Windows 3.1:

• Execute COBFUTY.EXE

• Select an execution command from the P-STAFF Utilities
menu.

• Select an execution command from the directory window of
File Manager.

• Set up an icon for the command, and activate the command
by double-clicking on the icon.

• Select Run from the Program Manager or File Manager
menus, then specify the program and parameters to run.

248 Chapter 7. File Processing

Selecting Commands

Select the command to be executed from the Command
pulldown menu on the menu bar. Selecting the command
displays a dialog box used to execute each command. For details
of each function, see “COBOL85 FILE UTILITY Functions.”

Figure 71. The COBOL85 FILE UTILITY window

The COBOL85 FILE UTILITY contains the following commands:

Convert

Create a new COBOL record sequential file in variable length
format with data generated by text editors as input. You can
also convert the COBOL file back to a text file.

Chapter 7. File Processing 249

Load

Convert COBOL file organization to another kind of file
organization using a record sequential file in variable length
record format as input.

In addition, all variable length records of a sequential file can
be added to an arbitrary COBOL file.

Unload

Convert COBOL file organization to variable length records
in a sequential file using an arbitrary COBOL file as input.

Browse

Browse the content of records in COBOL files.

Print

Print the records in COBOL files.

Edit

Edit the contents of records from COBOL files.

Extend

Add variable length records in a sequential file to existing
arbitrary COBOL files.

Sort

Sort records of an arbitrary COBOL file and place the results
in a variable length record sequential file.

Attribute

Display attribute information (record length, record key
information etc.) of an index file excluding the record
contents.

250 Chapter 7. File Processing

Recovery

Recover corrupt index files.

Reorganize

Reduce file size by deleting empty blocks in index files.

Copy

Copy a file.

Delete

Delete a file.

Move

Move a file to another location.

 Quitting the COBOL85 FILE UTILITY

Select Exit on the menu bar.

As with file processing using COBOL programs, file processing
using the COBOL85 FILE UTILITY depends on file organization.

For example, since record and line sequential files are processed
in sequential access, records are processed only in a fixed order
or cannot be inserted or deleted. See “File Organization Types
and Processing.”

A system error can occur during execution of the COBOL85 FILE
UTILITY. If an error occurs, an error code (decimal expression) is
displayed in the error message. Refer to the system error code
explanation or “System Error Codes” in Appendix F.

Chapter 7. File Processing 251

COBOL85 FILE UTILITY Functions

The COBOL85 FILE UTILITY provide the functions given below.
In quotation marks (") are commands (< > indicates a command
name and [] indicates its use is optional) to use the functions. For
more information about how to operate the dialog box, refer to
the online help.

252 Chapter 7. File Processing

Creating Files

Create a new COBOL file with data generated by text editors as
input using the "<Convert> [+ <Load>]" commands.

Figure 72. Creating a file with the COBOL85 FILE UTILITY

When an error occurs with extended specification, the contents of
existing files are lost if the check box of Make BACKUP is not
selected.

Chapter 7. File Processing 253

Adding Records

Add records to existing COBOL files with the "<Extend>"
command.

Figure 73. Adding records with the Extend command

The Extend window contains the following elements:

Exit

Quit (exit) the Extend window.

Browse

Browse the content of records in COBOL files.

Edit

Edit a record.

Option

Determine the method of data input (hexadecimal or
character) when adding new records.

Help

Access the online help.

Add button

254 Chapter 7. File Processing

Add new records to the file.

The following describes other items which are found in this
example of an Extend window.

Line sequential file

Illustrates the attributes of the displayed file.

Record length 120/120

Illustrates the record length/maximum record length.

HEX MODE

Illustrates the hexadecimal data input method.

Character string under [OFFSET] and ";0 +1 ... +E +F"

The position offset of the data record is illustrated by the
hexadecimal. The position of the cursor (offset in the data
record) is "0x00000008" which left "00000000" of "+8" of the
cursor line and the cursor was added.

Two character strings under "+0 +1 ... +E +F"

The data record is displayed by a hexadecimal every one
byte.

Character string under "0123456789ABCDEF"

The data record is displayed by a one-byte character mark.

Note: Characters that cannot be displayed, such as national
characters, are displayed with periods (.).This is the same for
browsing, editing, and printing records. Refer to the online help
for additional details.

Chapter 7. File Processing 255

Adding records from another file

Use the "[<Convert> +] <Load (extend)> or [<Unload> +]
<Load (extend)>" commands to add the contents of other files to
existing COBOL files.

or

Figure 74. Two methods of adding records from another file

256 Chapter 7. File Processing

Browsing Records

Browse the contents of records in COBOL files with the
"<Browse>" command.

Figure 75. Browsing files with the Browse command

The Browse window contains the following elements:

Exit

Quit (exit) the Browse window.

Browse

Browse the contents of records in COBOL files.

Options

Determine the method of data input (hexadecimal or
character) when adding new records.

Help

Access the online help.

Chapter 7. File Processing 257

Key button

Change the order of displayed records. The order displayed
depends upon which record key is selected.

Search button

Search for a particular record.

First button

Go to the first record in a file.

Prev button

Go to the previous record in a file.

Next button

Go to the next record in a file.

Last button

Go to the last record in the file.

Note: Characters that cannot be displayed, such as national
characters, are displayed with periods (.).This is the same for
browsing, editing, and printing records. Refer to the online help
for additional details.

258 Chapter 7. File Processing

Editing Records

Update, insert, and delete records within COBOL files using the
"<Edit>" command.

Figure 76. Updating, inserting or deleting records with the Edit command

The Edit window contains the following elements:

Exit

Quit (exit) the Edit window.

Browse

Browse the content of records in COBOL files.

Edit

Edit a record.

Options

Determine the method of data input (hexadecimal or
character) when adding new records.

Chapter 7. File Processing 259

Help

Access the online help.

Key button

Change the order of displayed records. The order displayed
depends upon which record key is selected.

Search button

Search for a particular record.

First button

Go to the first record in a file.

Prev button

Go to the previous record in a file.

Next button

Go to the next record in a file.

Last button

Go to the last record in the file.

Update button

Update a record.

Insert button

Insert a new record.

Delete button

Delete a record.

Length button

Change the length of a record.

260 Chapter 7. File Processing

Note: If the maximum record length of an indexed file is 16
kilobytes or more, the file cannot be opened with the Edit
command.

Sorting Records

Sort records in COBOL files with the "<Sort>" command.

Figure 77. Sorting records in COBOL files with the Sort command

A record sequential file with variable length record format is
generated.

Manipulating COBOL files

Copy, delete, and move COBOL files with the "<Move>,
<Copy>, and <Delete>" commands.

Chapter 7. File Processing 261

Figure 78. Manipulating COBOL files with the Copy and Move commands

262 Chapter 7. File Processing

Printing Files

Print the contents of COBOL files with the "<Print>" command.

Figure 79. Printing COBOL files with the Print command

Converting File Types

Convert COBOL file to another kind of file organization using
the "<Load>" or "<Unload>" commands. Use the "<Load>"
command to input a record sequential file in variable length
record format and convert it to a COBOL file. Use the
"<Unload>" command to input a COBOL file and convert it to a
record sequential file in variable length record format.

Figure 80. Converting files using the Load and Unload commands

Chapter 7. File Processing 263

Manipulating Indexed Files

You can execute the following operations for indexed files:

• Display attribute information with the "<Attribute>"
command

Figure 81. Displaying attribute information with the Attribute command

264 Chapter 7. File Processing

The Indexed File Information window contains the following
information:

File name

Displays the index file name whose attributes follow.

Record format

Displays the record format (fixed length/variable length).

If the maximum record length is fixed, the maximum record
length is displayed.

If the minimum record length is fixed, the minimum record
length is not displayed.

If the maximum record length is variable, the maximum
record length is displayed.

If the minimum record length is variable, the minimum
record length is displayed.

Record key information

Displays key information for the index file. The format of the
key information is the same as the format of key information
specified when the index file is created by the Load
command. Refer to the online help for more details.

Block length

Displays the length of one block in the index file.

Block increment

Displays block increments in the index file.

Compress of record data

Displays whether or not the stored record data is
compressed.

Chapter 7. File Processing 265

Key data compression

Displays whether or not the stored key data is compressed.

Number of records

Displays the number of records in the index file.

Number of blocks

Displays the number of blocks in the index file.

Number of empty blocks

Displays the number of unused blocks in the index file.

• Recover corrupt indexed files with the "<Recovery>"
command.

Figure 82. Recovering corrupt files with the Recovery command

266 Chapter 7. File Processing

• Reorganize (delete empty blocks) indexed files with the
"<Reorganize>" command.

Figure 83. Reorganizing indexed files with the Reorganize command

Chapter 8. Printing

This chapter explains how to print data by line or form, and
provides information about types of printing methods, print
characters, form overlay patterns, forms control buffers (FCB),
and form descriptors.

268 Chapter 8. Printing

Types of Printing Methods

Use a print file or presentation file to print data from a COBOL
program. This section outlines how to print data using these
files, and explains print character types, form overlay patterns,
forms control buffers (FCB), and form descriptors. The print
function you use depends on the printer being used. Refer to the
user manual for each specific printer.

Outline of Printing Methods

There are two types of print files, files with a FORMAT clause
and those without a FORMAT clause.

Use a print file without a FORMAT clause to print data in line
mode (line by line; Use 1), overlay data line by line with a form
overlay pattern, and print data by setting print information with
an FCB (Use 2).

By using a print file with a FORMAT clause, data in forms with
form descriptors can be printed.

This chapter classifies print and presentation files in the
following groups:

1. Print file without a FORMAT clause (Use 1)

2. Print file without a FORMAT clause (Use 2)

3. Print file with a FORMAT clause

4. Presentation file

The following table lists the characteristics, advantages, and uses
of printing methods (1) to (4).

Chapter 8. Printing 269

Table 20. Characteristics, advantages, and uses of each
printing method

File Type (1) (2) (3) (4)
Characteristics Data can be printed in line mode. B B B C

Data can be overlaid with form overlay
patterns.

C B B B *1

Data in forms can be printed with
form descriptors.

C C B B

Advantage Simple program coding. A B B A
Simple forms printing. B A A A
Existing form descriptors generated by
other systems can be used.

C C A A

Various types of print information can
be specified in programs.

C A A B

Use Output data to files. A A C C
Print forms. B A A A

A : Can be used (suitable).
B : Can be used.
C : Cannot be used.
*1 Can be printed only when an overlay pattern name is specified in form descriptors or is
specified in a printer information file. For details, refer to the FORM RTS HELP.

The following table lists related products

Table 21. Related products

File Type (1) (2) (3) (4)
 Power FORM - - - Needed
 FORM overlay option - Needed Needed Needed
 FORM RTS - - Needed Needed
 MeFt/NET - - - Needed

Each printing method is outlined below.

270 Chapter 8. Printing

(1) Print File without a FORMAT Clause (Use 1)

By using a print file without a FORMAT clause, data can be sent
in line mode to a printer. During output, a logical page size, line
feed, and page alignment can be specified.

For details on how to use a print file when printing data in line
mode, see “Using Print File 1.”

(2) Print File without a FORMAT Clause (Use 2)

With a print file, a page of output data can be overlaid with a
form overlay pattern, or print information can be specified with a
FCB. When specifying that a page of output data be overlaid
with a form overlay pattern, use a control record. When
specifying print information with a FCB, write a FCB control
statement in an initialization file.

For details on form overlay patterns, see “Form Overlay
Patterns.” For details on FCB, see “Forms Control Buffers
(FCB).” For how to use print files, see “Using Print File 2.”

(3) Print File with a FORMAT Clause

For a print file with a FORMAT clause, specify the FORMAT
clause in file definitions in a program. By using a print file with a
FORMAT clause, data in forms can be printed with partitioned
form descriptors. At this time, the attributes of items defined in
the form descriptors can be changed by using a special register
during program execution.

Forms can be printed with the form overlay patterns described
above and FCB. FORM RTS is required, however, to print forms
using a print file with a FORMAT clause.

Chapter 8. Printing 271

For details on form descriptors, see “Form Descriptors.” For
details on print files with form descriptors, see “Using Print Files
with Form Descriptors.”

(4) Presentation File

With a presentation file, data in forms defined in the form
descriptors can be printed. As with the print file with a FORMAT
clause, the attributes of items defined in the form descriptors can
be changed by using a special register during program execution.

Before using a presentation file, the file must be defined and a
presentation record must be created with a WRITE statement.

When a chart record is output, forms in the format defined in the
form descriptors are printed. The attributes of output data
defined in the form descriptors can then be changed. For more
information about how to use presentation files when printing
forms, see “Using Presentation Files (Printing Forms).”

Print Characters

The size, font, form, direction, and space of print characters can
be specified in the CHARACTER TYPE clause of a data
description entry. MODE-1, MODE-2, MODE-3, and a
mnemonic-name, and print mode name can be specified in a
CHARACTER TYPE clause.

MODE-1, MODE-2, and MODE-3 designate 12-point, 9-point,
and 7-point print characters.

When a mnemonic-name is set, data is printed with the size, font,
form, direction, and space of a print character indicated by a
function-name. That function-name is related to a mnemonic-
name with a function-name clause in the SPECIAL-NAMES
paragraph.

272 Chapter 8. Printing

When a print mode name is set, data is printed with the size,
font, form, direction, and space of a print character defined in a
PRINTING MODE clause in the Special-Names paragraph.

For details about how to write a CHARACTER TYPE clause, and
how to define a mnemonic-name and print mode name, refer to
the “COBOL85 Reference Manual.”

The sizes, fonts, forms, and directions of available print
characters, and spaces defined according to the sizes and forms
of print characters are explained below.

Available sizes

3.0 to 300.0 points

Character size can be specified in units of 0.1 point. When a
raster-type device font (fixed size) is selected, data is printed with
a point (character size) of a font mounted on each printer.

If character size specification is omitted and execution
environment information @CBR_PrinterANK_Size is specified,
the character size will be the default of the executing platform. If
no character size is specified, the default is 7.0 points. Refer to
“Format of Run-time Environment Information” in Chapter 5.

Specify a font with run-time environment information
@PrinterFontName. If the run-time environment information is
omitted, CourierNew is normally selected.

If an outline font or a TrueType font is specified for run-time
environment information, the print format is a scaleable font and
data can be printed with 3.0 to 300.0 points in units of 0.1 point.

Available Fonts

Fonts used are MINCHOU, MINCHOU-HANKAKU, GOTHIC,
and GOTHIC-HANKAKU. The default font is GOTHIC.

Chapter 8. Printing 273

By using a print file without a FORMAT clause, if the font name
is set for run-time environment information @PrinterFontName,
data is printed with the character font of the specified font name.
If the font name is omitted, CourierNew is used as the default.

For a print file with a FORMAT clause and presentation file, refer
to the FORM RTS online help.

Available Print Character Forms

Print character forms are em-size and em-size tall and wide;
double size, en-size, and en-size tall and wide; and double size.
The default form is em-size.

Orientation of Print Characters

Characters are printed horizontally.

Print Character Spaces

The following table lists spaces determined according to the sizes
and forms of print characters. Character spaces of 0.01 to 24.00
cpi are specified in units of 0.01 cpi. The default space is 10.0 cpi.

274 Chapter 8. Printing

Table 22. Relationship between print character sizes/forms and character spaces

Unit: cpi
Character Form

Character
Size

 Em-
size

 En-
size

 Tall
char

 En-
size
tall
char

Wide
size
char

 En-
size
wide
char

Double
size

En-
double
size

MODE-1
(12 point)

 5 10 5 - 2.5 - 2.5 5

MODE-2
(9 point)

 8 16 8 - 4 - 4 8

MODE-3
(7 point)

 10 - 10 - 5 - 5 -

A
(9 point)

 5 10 5 10 2.5 5 2.5 5

B
(9 point)

 20/3 40/3 20/3 40/3 10/3 20/3 10/3 20/3

X-12P
 (12 point)

 5 10 5 10 2.5 5 2.5 5

X-9P
(9 point)

 8 16 8 16 4 8 4 8

X-7P
(7 point)

 10 20 10 20 5 10 5 10

C
 (9 point)

 7.5 15 7.5 15 3.75 7.5 3.75 7.5

D-12P
(12 point)

 6 12 6 12 3 6 3 6

D-9P
(9 point)

 6 12 6 12 3 6 3 6

For the meanings of the codes for character sizes, refer to the
“COBOL85 Reference Manual.”

Arrangement coordinates of print characters

There are two methods for calculating the print coordinates when
printing forms using the FORMAT phrase:

Chapter 8. Printing 275

(1) Dividing the print resolution character interval with the space
between the lines (DPI), and then arranging characters while
rounding off the remainder.

(2) Arrange the characters in coordinates and corrected the result
for each print inch. This is done when the resolution cannot
be divided using the character interval (CPI) and space
between lines (DPI).

In method 1 the character stores only with the number of dots
rounded by the top and left. If method 1 can’t be used, then
method 2 can be used as an alternate.

Coordinates for arranging printed characters can be specified
with environment variable @CBR_PrintTextPosition when the
FORMAT clause is omitted from the file control entry.

Refer to Chapter 5, “Format of Run-time Environment
Information” on the method of specifying the arrangement
coordinates of print characters with @CBR_PrintTextPosition.

Form Overlay Patterns

A form overlay pattern is used to set fixed sections in forms in
advance, such as ruled lines and headers. Forms can be printed
by overlaying a page of output data with a form overlay pattern.

A form overlay pattern is generated from a screen image with the
FORM overlay option. A form overlay pattern can be shared
with multiple programs, and form overlay patterns generated by
other systems can also be used.

For more information about how to generate form overlay
patterns, refer to the “FORM V1.3 Manual.” For printing forms
when using form overlay patterns, see “Using Print File 2.”

276 Chapter 8. Printing

Forms Control Buffers (FCB)

A forms control buffer (FCB) defines the number of lines on one
page, line space, and column start position. By using an FCB, the
number of lines on one page, line space, and column start
position can be changed.

When an FCB name is specified with an I control record or when
the default FCB name is specified in the initialization file
(@DefaultFCB_Name=FCBxxx), FCB information can be specified
externally. Specify the FCB information in the initialization file as
follows:

FCBxxx=FCB-control-statement

xxx is the FCB name specified in the I control record or FCB
name (part of xxx) specified for execution environment
information @ DefaultFCB_Name=FCBxxx.

For details of the syntax of a FCB control statement, see
Appendix K, “FCB Control Statement.”

Chapter 8. Printing 277

The default value of the I control record FCB name is:

• 6 lpi x 11 inches (66 lines)

• Channel number : 01, Line number : 4

• Channel number : 02, Line number : 10

• Channel number : 03, Line number : 16

• Channel number : 04, Line number : 22

• Channel number : 05, Line number : 28

• Channel number : 06, Line number : 34

• Channel number : 07, Line number : 40

• Channel number : 08, Line number : 46

• Channel number : 09, Line number : 66

• Channel number : 10, Line number : 52

• Channel number : 11, Line number : 58

• Channel number : 12, Line number : 64

Refer to “Format of Run-time Environment Information” in
Chapter 5 for details on specifying the default FCB name.

Refer to “Using Print File 2” for details on specifying I control
records.

Form Descriptors

When forms are designed with FORM or Power FORM, form
descriptors are generated. COBOL85 enables data items defined
in the form descriptors to be included in a program so that forms
can be printed with values set in the data items. Form overlay
patterns can be included in form descriptors.

278 Chapter 8. Printing

FORM RTS is required when printing forms using form
descriptors. FORM RTS requires a printer information file. For
details of printer information files, refer to the FORM RTS online
help.

For information on how to generate form descriptors, refer to the
“FORM V1.3 Manual.” For information about printing forms by
using form descriptors see “Using Print Files with Form
Descriptors,” or “Using Presentation Files (Printing Forms).”

Using Print File 1

This section explains how to print data in line mode using a print
file without a FORMAT clause. For a sample of a program using
a print file, refer to the “Getting Started with Fujitsu COBOL”
guide.

Chapter 8. Printing 279

Outline

Define a print file in the same manner as a record sequential file,
and do the same processing as generating the record sequential
file. The following can be specified with a print file without a
FORMAT clause:

• Logical page size (LINAGE clause in the file description
entry)

280 Chapter 8. Printing

• Character size, font, form, direction, and space
(CHARACTER TYPE clause in the data description entry)

• Line feed and page alignment (ADVANCING phrase in the
WRITE statement)

Program Specifications

This section details program descriptions in a print file using
data in line mode for each COBOL division.

 ENVIRONMENT DIVISION

In the ENVIRONMENT DIVISION, write the relation between
the function-name and mnemonic-name (print characters are
indicated in the program) and define a print file.

Relating the Function-Name to the Mnemonic-Name

Relate the function-name indicating the size, font, form,
direction, and space of a print character to the mnemonic-name.
Specify the mnemonic-name in the CHARACTER TYPE clause
when defining data items in records and work data items. For
function-name types, refer to the “COBOL85 Reference Manual.”

Chapter 8. Printing 281

Defining Print Files

The following table lists information required to specify a file
control entry.

Table 23. Information to be specified in a file control entry

Location Information
Type

Details and Use of Specification

Required SELECT clause File name Write the name of a file to use in a
COBOL program, conforming to the
rules of COBOL user-defined words.

ASSIGN clause File-
reference-
identifier

Write PRINTER, local-printer-port-
name (LPTn) or serial-printer-port-
name (COMn:).
When PRINTER is specified, data is
output to the system default printer.

Optional ORGANIZATIO
N clause

Keyword
indicating file
organization

Write SEQUENTIAL.

FILE STATUS
clause

Data-name Write the data-name defined as a 2-
byte alphanumeric data item in the
WORKING-STORAGE or LINKAGE
section.
 The input-output execution result is
set for this data-name. For value to be
set, see Appendix B, “I-O Status List.”

 DATA DIVISION

In the DATA DIVISION, define record definitions and the
definitions of data-names specified in a file control entry. Write
record definitions in file and record description entries. The
following table lists information required to write a file
description entry.

282 Chapter 8. Printing

Table 24. Information to be specified in a file description entry

Location Information
Type

Details and Use of Specification

Optional RECORD
clause

Record size Define the size of the printable area.

LINAGE clause Logical page
configuration

Define the number of lines per page, top
and bottom margins, and the footing
area starting position.
When a data-name is specified in this
clause, the data can be changed in the
program.

 PROCEDURE DIVISION

Execute an input-output statement in the following sequence:

1. OPEN statement with OUTPUT specified: Starts printing.

2. WRITE statement: Outputs data.

3. CLOSE statement: Stops printing.

 OPEN and CLOSE Statements

Use an OPEN statement once at the start of printing and a
CLOSE statement once at the end of printing.

 WRITE Statement

One WRITE statement writes one line of data.

Specify PAGE in the ADVANCING phrase of the WRITE
statement for page alignment. When the number of lines is
written, the page is advanced by the specified number of lines.

The AFTER ADVANCING and BEFORE ADVANCING phrases
are used to specify whether data is output before or after page
alignment or a line feed. When the ADVANCING phrase is
omitted, AFTER ADVANCING 1 is the default.

Chapter 8. Printing 283

Control of print lines with AFTER ADVANCING phrase is
shown in the following example.

Figure 85. Print lines with AFTER ADVANCING

When writing WRITE A FROM B, define the CHARACTER
TYPE clause for B but not for A. If the CHARACTER TYPE
clause is defined for both A and B, only the specification of B is
valid.

Program Compilation and Linkage

There are no required compiler and linker options.

Program Execution

First, assign a printer. Assigning a printer depends on the
contents of descriptions in the ASSIGN clause in the file control
entry.

This section explains how to specify a printer in a program or
initialization file, and gives the relation between the contents of
descriptions in the ASSIGN clause and the output destination by
using examples.

284 Chapter 8. Printing

If the destination of a print file is other than a printer, contents
are not assured.

Specifying a Printer

A printer can be specified by the following methods:

• Printer name

• Local printer port name ("LPTn:") or Serial port name
("COMn: "). Where "n" is a number from 1-9.

Windows 95

Use the information in the Details tab of the Printer Properties
dialog box to obtain the printer name. To access the Details tab,
click on the Start button and then select SettingsàPrinters.
Highlight a printer and select Properties from the File menu.
Click on the Details tab.

The Printer Properties dialog box (with the Details tab selected) is
shown below.

Chapter 8. Printing 285

Figure 86. The Details tab in the Printer Properties dialog box

Printer name

Specify a locally connected printer in the following manner:

PRTNAME:HP LaserJet 5P

In this example, HP LaserJet 5P is the specified printer.

Specify a printer connected to a network in the following
manner:

286 Chapter 8. Printing

PRTNAME:\\NMSVR20\Canon LBP-A404E

Local printer port name / Serial port name

Specify a local printer port name or serial port name in the
following manner:

Example : "LPT1:"

Windows NT

Use the information in the Printer Properties dialog to obtain the
printer name. Activate the Print Manager and select Properties
from the Printer menu to display the Printer Properties dialog
box. The Printer Properties dialog box is shown below:

Figure 87. The Printer Properties dialog box

Printer name

Specify a locally connected printer in the following manner:

PRTNAME:LaserJet

In this example, LaserJet is the specified printer.

Specify a printer connected to a network in the following
manner:

PRTNAME:\\NMSVR20P\LaserJet

Chapter 8. Printing 287

Local printer port name / Serial port name

Specify a local printer port name or serial port name in the
following manner:

Example : "LPT1: "

Windows 3.1

• Specify the name of the port where the printer is connected.

• Specify "LPTn: " when the port where the printer is connected
is a local printer port. Specify "COMn:" when connected to a
serial port. "n" designates 1 to 9.

Examples of Programs

When PRINTER is Specified in the ASSIGN Clause

Data is sent to the system default printer (*1).

Figure 88. Data flow when sent to the default printer

288 Chapter 8. Printing

*1 System default printer:

Windows 95

"Set as Default" is checked for the printer.

Windows NT

Printer is set as default using the Print Manager.

Windows 3.1

Printer is set as default using the control panel.

To send data to a printer connected to a specific port, follow the
method explained below.

When a File-Identifier is Specified in the ASSIGN Clause

Define the name of the output destination printer, local printer
port name, or serial port name with the file-identifier as the run-
time environment information name. For details on setting run-
time environment information, refer to “Setting Run-time
Environment Information” in Chapter 5.

A file assignment error occurs if no printer is assigned to the file-
identifier. An example of when the initialization file is used is
shown in the following figure.

Chapter 8. Printing 289

Figure 89. Data sent to a printer specified in the initialization file

290 Chapter 8. Printing

When a File-Identifier Literal is Specified in the ASSIGN Clause

Data is sent to a printer specified in the file-identifier literal or to
a printer connected to a local or serial port specified in the file-
identifier literal.

Figure 90. Data sent to a printer specified in the file-identifier literal

Chapter 8. Printing 291

When a Data-Name is Specified in the ASSIGN Clause

Data is sent to a printer specified in the data-name or to a printer
connected to a local or serial port specified in the data-name. A
file assignment error occurs if the data-name is left blank.

Figure 91. Data sent to a printer specified in the data-name in the
ASSIGN clause

292 Chapter 8. Printing

Using Print File 2

This section explains how to use a form overlay pattern and FCB
in a print file without a FORMAT clause.

Chapter 8. Printing 293

Outline

Use a control record to employ a form overlay pattern with a
print file.

As with ordinary data, a control record is created with a WRITE
statement. If a control record is created with a form overlay
pattern name specified, the data and form overlay pattern are
overlaid on the subsequent page.

The size, font, form, direction, and space of a print character are
defined with a COBOL program and form overlay pattern. For
character settings, see “Print Characters,” and also refer to the
“FORM V1.3 Manual.”

Figure 92. Defining print characters

Program Specifications

This section details program descriptions in COBOL divisions
when forms are printed with form overlay patterns.

294 Chapter 8. Printing

ENVIRONMENT DIVISION

In the ENVIRONMENT DIVISION, write the relation between
the function-name and mnemonic-name, and define a print file.

Relating the Function-Name to the Mnemonic-Name

To enter a control record to the function-name CTL, relate the
mnemonic-name. Specify this mnemonic-name in the WRITE
statement when creating the control record.

When specifying a print character with a CHARACTER TYPE
clause, relate the function-name indicating the size, font, form,
direction, and space of a print character to the mnemonic-name.
For function-name types, refer to the “COBOL85 Reference
Manual.”

Defining Print Files

Define a print file in a file control entry. For details of
descriptions in a file control entry, see Table 23, “Information to
be specified in a file control entry.”

DATA DIVISION

In DATA DIVISION, define the record definitions and the
definitions of data-names used in the ENVIRONMENT
DIVISION.

Defining Records

Define a record in file and record description entries. For details
of descriptions in a file description entry, see Table 24,
“Information to be specified in the file description entry.” Define
the following records in the record description entry:

Chapter 8. Printing 295

Line Records

Define a record to print data edited in a program. Multiple line
records can be written.

The contents of one line record are printed sequentially from the
left margin of the printable area. Specify the size of a line record
so that it is written within the printable area.

The size of a print character can be specified in the CHARACTER
TYPE clause in the data description entry. For contents that can
be specified in the CHARACTER TYPE clause, see “Print
Characters.”

Control Records

Two types of control records are used for printing, I and S
control records. The format of each control record is shown
below.

For detailed explanations of the record areas and areas not
explained in this manual, refer to the “COBOL85 Reference
Manual.”

As printer functions vary by model, refer to the users guide for
each printer specified.

 I Control Record

296 Chapter 8. Printing

01 I-CONTROL-REC.
03 REC-ID PIC X(2) VALUE "I1".
03 M PIC X(1) VALUE "1".
03 FOVL PIC X(4). ⇒ FOVL
03 R PIC 9(3). ⇒ R
03 C PIC 9(3). ⇒ C
03 FCB PIC X(4). ⇒ FCB
03 FORMAT-ID PIC X(8). ⇒ FORMAT-ID
03 PIC X(30).
03 PRT-FORM PIC X(2). ⇒ PRT-FORM
03 FSIZE PIC X(3). ⇒ SIZE
03 HOPPER PIC X(2). ⇒HOPPER
03 PIC X(2).
03 SIDE PIC X. ⇒ SIDE
03 PIC X.
03 PRT-AREA PIC X. ⇒ PRT-AREA
03 BIND ⇒ BIND
 04 PIC X OCCURS 4 TIMES.
03 WIDTH PIC 9(4). ⇒WIDTH
03 OFFSET.
 04 PIC 9(4) OCCURS 4 TIMES. ⇒ OFFSET
03 PIC X(9) VALUE SPACE. ⇒ RSV

FOVL

Specify the name of the form overlay pattern to use. If an overlay
group is specified, a single overlay is performed by using the
first overlay pattern in the group.

R

Specify the number of times (0 to 255) that the form overlay
pattern is printed. With this system, the same value as the
number of copies is assumed.

C

Specify the number of copies (0 to 255) for each page.

Chapter 8. Printing 297

FCB

Specify the applicable FCB name. Cannot be specified at the same
time as FORMAT-ID.

FORMAT-ID

Specify the applicable name of the screen and form descriptors to
use. Cannot be specified at the same time as FCB.

PRT-FORM

Specify a print format. The following values can be specified:

• P (portrait mode)

• L (landscape mode)

• LP (line printer mode)

• PZ (reduced printing portrait mode),

• LZ (reduced printing landscape mode)

PZ and LZ reduction specifications, however, are ignored. P and
L specifications are used instead.

SIZE

Specify a forms size. The following sizes can be specified:
A3, A4, A5, B4, B5, and LTR.

You can dynamically specify a paper size to be used at run time.
In the I control record, the FSIZE field is set to a user-defined
string of three characters or less. The user-defined string replaces
"XXX" in the environment variable @PRN_FormName_xxx which
is called at run time.

Environment variable @PRN_FormName_xxx is set equal to a
string that defines the paper size. The values for the paper size
strings can be found in the Windows system printer defaults.

298 Chapter 8. Printing

Refer to the method of specifying execution environment
information in “Format of Run-time Environment Information”
in Chapter 5.

Note: The user-defined string specifies a blank for this field when
paper sizes are specified by using the print file with a FORMAT
clause and specifies an actual paper size with the printer
information file. For additional details, refer to the FORM RTS
online help.

HOPPER

Specify a hopper to be used to feed forms. The following values
can be specified:

• P1 (hopper 1)

• P2 (hopper 2)

• S (sub-hopper)

• P (arbitrary hopper)

The hopper cannot be changed by an application using the I
control record because the system automatically selects a hopper
according to the form size specified. (32)

SIDE

Specify a print side. The following values can be specified:

• F (single-sided printing)

• B (double-sided printing)

Single-sided printing is output, however, even when B is
specified.

PRT-AREA

Specify whether the unprintable area is set (L) or not set (N). This
specification has no effect, however, if the form descriptors are
not used.

Chapter 8. Printing 299

BIND

Specify the binding direction when multiple pages are outputted
sequentially.

WIDTH

Specify the binding width from 0 through 9999 (unit: 1/1440
inch).

OFFSET

Specify the offset from 0 through 9999 (unit: 1/1440 inch).

RSV

Area used by the system. Enter a blank.

 S Control Record

PROCEDURE DIVISION

Execute an input-output statement in the following sequence:

1. OPEN statement with OUTPUT specified: Starts printing.

300 Chapter 8. Printing

2. WRITE statement: Outputs data.

3. CLOSE statement: Stops printing.

OPEN and CLOSE Statements

Use an OPEN statement once at the start of printing and a
CLOSE statement once at the end of printing.

WRITE Statement

Use a WRITE statement when creating a control or line record.

A line record is written in the same manner as when using a
WRITE statement to create data in line mode. See “Program
Specifications.”

To write a control record, write the mnemonic-name related to
the function-name CTL in the ADVANCING phrase.

To overlay data created by a line record with a form overlay
pattern, write a control record with a form overlay pattern name
specified.

To not overlay data with a form overlay pattern, write a control
record with a blank entered as the form overlay pattern name.

After a control record is written, the format of the output page is
set according to the contents of the control record. When a
control record is written, however, no line record can be written
to the current page. Thus, to write a line record immediately after
a control record, the AFTER ADVANCING PAGE phrase must
be specified.

Chapter 8. Printing 301

 :
 :
 FILE SECTION.
 FD file-1.
 :
 :
 01 control-record.
 :
 :
 02 FOVL PIC X(4).
 :
 :
 MOVE "MREC" TO FOVL.
 WRITE control-record AFTER ADVANCING mnemonic-
 name. (1)
 MOVE SPACE TO line-record.
 WRITE line-record AFTER ADVANCING PAGE. (2)
 MOVE 101234 TO employee-number.
 MOVE "Jack London" TO name.
 WRITE line-record AFTER ADVANCING 3. (3)
 MOVE 105678 TO employee-number.
 MOVE "Anne Miller" TO name.
 WRITE line-record AFTER ADVANCING 2. (4)
 :
 :

Figure 93. Flow of control with a form overlay pattern

Program Compilation and Linkage

There are no required compiler and linker options.

302 Chapter 8. Printing

Program Execution

This section explains how to execute a program using a form
overlay pattern and FCB.

Programs Using Form Overlay Patterns

When a form overlay pattern is used with a print file, the
following settings are required:

• Specify the form overlay pattern storage directory for run-
time environment information FOVLDIR. If the FOVLDIR
setting is omitted, the form overlay pattern is not printed.

• If the extent of the form overlay pattern storage file is other
than OVD, specify an extent for run-time environment
information OVD_SUFFIX. If the file has no extent, specify
"None".

• If the first four characters of the name of the form overlay
pattern storage file is other than KOL5, specify the first four
characters of the file name for run-time environment
information FOVLTYP.

For details about how to set run-time environment information
FOVLDIR, FOVLTYPE, and OVD_SUFFIX, refer to “Format of
Run-time Environment Information” in Chapter 5. An example
of writing an initialization file is shown below.

Contents of an initialization file when executing program A
using a form overlay pattern

[A]
FOVLDIR=C:\FOVLDIR (1)
OVD_SUFFIX= (2)
FOVLTYPE=FOVL (3)

Chapter 8. Printing 303

(1) Set the directory (C:\FOVLDIR) where the form overlay
pattern is stored for run-time environment information
FOVLDIR.

(2) The extent of the form overlay pattern storage file is OVD.

(3) The first four characters of the form overlay pattern storage
file are KOL6.

Outputting Form Overlay Patterns

For printers supporting form overlay patterns:

The software overlay function provided by the Windows 95,
Windows NT , and Windows 3.1 graphic device interface (GDI)
is supported, so a form overlay pattern can be sent to printers
having a Windows 95, Windows NT or Windows 3.1 printer
driver.

For Windows 3.1 (16), use a COBOL85 run-time system
information file.

COBOL85 Run-time System Information File (COB85RTS.CBR)
(16)

A COBOL85 run-time system information file keeps information
common to all the COBOL85 application run-time environments
within one system. Use a text editor to change the contents of a
COBOL85 run-time system information file.

The PRINTERSEQUENCE section is entered in a COBOL85 run-
time system information file. The PRINTERSEQUENCE section
defines a printer name and a mode setting for the printer
(hardware setting).

304 Chapter 8. Printing

The specification format of the PRINTERSEQUENCE section is
shown below.

 [PRINTERSEQUENCE]
printer-name=[mode-type]
printer-name=[mode-type]
(1) (2)

[]: Optional

(1) Printer name: Specify the printer name displayed on the
Windows Control Panel.

(2) Mode type: Specify the mode set for the printer (hardware
setting). The mode type is indicated by a blank character or a
uppercase alphabetic character. COBOL85 supports the
following printer modes (orders):

Mode (order) Mode Type
FM (For blank or default)
FM (image printing) (*1) F
ESC/Page E
LIPS III L
Graphic device interface (GDI)
(*2)

G

For the modes (orders) supported by the printer, refer to the
manual included with the printer. If the printer name is omitted,
FM is assumed as the mode (order).

*1 To use a form overlay pattern utilizing image printing
with a printer supporting the FM sequence, specify F for the
mode type.

*2 The result of a form overlay pattern output in the graphic
device interface (GDI) mode depends on the printer
specification. Print a form overlay pattern in FM mode using
a printer supporting the FM sequence. This improves
performance and printing quality, compared to when the
graphic device interface (GDI) mode is used.

For information about how to use the tool, refer to the online
help.

Chapter 8. Printing 305

Figure 94. The establishment of the order of classification dialog box

When printing with a form overlay pattern is done in other than
the graphic device interface (GDI) mode, a blank sheet of paper
may be ejected, depending on the printer. In this case, if the
printer can control "Print Without Data" on the printer operation
panel, reset it to "Print Without Data".

Programs Using FCB

When FCB is used with a print file, write an FCB control
statement in the initialization file.

For the specification format of an FCB control statement, see
“Forms Control Buffers (FCB).” For details of an FCB control
statement, refer to Appendix K, “FCB Control Statement.”

An error occurs if an FCB name is specified in the I control
record, but no applicable FCB control statement is found in the
initialization file.

An example of an FCB control statement is shown below.

Contents of the initialization file when executing program A with
FCB1 set as the FCB name:

[A]
FCBFCB1=LPI((6,1),(12,4),(6,1),(12,2),(6,1))

306 Chapter 8. Printing

The output format of one page set by a FCB control statement is
shown below:

Figure 95. Format of an FCB control statement

Chapter 8. Printing 307

Using Print Files with Form Descriptors

This section explains how to use partitioned form descriptors by
using a print file with a FORMAT clause.

308 Chapter 8. Printing

Outline

Use a chart record to print forms using partitioned form
descriptors.

Define a partition (item group) designated in the form
descriptors in a chart record. You do not have to write the
definition statement of a chart record, as it can be fetched from
the form descriptors with a COBOL COPY statement.

As with ordinary data, create a chart record with a WRITE
statement. The size, font, form, direction, and space of print
characters can be indicated in a COBOL program and form
descriptors.

For character settings, see “Print Characters,” and the “FORM
V1.3 Manual.”

Figure 96. Flow of control with form descriptors

Program Specifications

This section explains how to write programs that use form
descriptors in a print file with a FORMAT clause.

Chapter 8. Printing 309

ENVIRONMENT DIVISION

In the ENVIRONMENT DIVISION, write the relation between
the function-name and mnemonic-name (print characters are
indicated in the program) and define a print file.

Relating the Function-Name to the Mnemonic-Name

To specify a print character with a CHARACTER TYPE clause,
relate the function-name indicating the size, form, direction, and
space of a print character to the mnemonic-name. For function-
name types and type styles, refer to the “COBOL85 Reference
Manual.”

Defining Print Files

Define a print file in a file control entry. The following table lists
information required to write a file control entry.

Table 25. Information to be specified in a file control entry

Location Information
Type

Details and Use of Specification

Required SELECT
clause

File name Write the name of a file to use in a COBOL
program, conforming to the rules of COBOL user-
defined words.

ASSIGN
clause

File-
reference-
identifier

Write a file-identifier, file-identifier literal, or data-
name. Use a file reference code to assign a printer
information file to be used by Form RTS at
execution time.

FORMAT
clause

Data-name Specify a data-name defined as an 8-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. Use this data-
name to set the form descriptor name.

GROUP
clause

Data-name Specify a data-name defined as an 8-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. Use this data-
name to set the name of the item group defined in
the form descriptor.

310 Chapter 8. Printing

Table 25. Information to be specified in a file control entry (cont.)

Location Information
Type

Details and Use of Specification

Optional FILE
STATUS
clause

Data-name Write the data-name defined as a 2-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. The input-output
execution result is set for this data-name. For value
to be set, see Appendix B, “I-O Status List.” For
detail information, specify a 4-bytes alphanumeric
data item.

How you assign a printer information file at execution time
depends on whether a file-identifier, file-identifier literal, or data-
name is specified for a file-reference-identifier.

What you specify for a file-reference-identifier depends on when
the name of the printer information file is determined. Specify a
file-identifier literal if the name of the printer information file is
determined during COBOL program generation and not changed
afterwards. Specify a file-identifier if the name of the printer
information file is undetermined during COBOL program
generation or it is to be determined every program execution
time. Specify a data-name to determine the name of the printer
information file in a program.

 DATA DIVISION

In the DATA DIVISION, define record definitions and the
definitions of data used in the ENVIRONMENT DIVISION.

Define a record in file and record description entries. The
following table lists information required to write a file
description entry.

Chapter 8. Printing 311

Table 26. Information to be specified in a file description entry

Location Information Type Details and Use of
Specification

Optional RECORD clause Record size Define the size of the
printable area.

CONTROL
RECORD clause

Control record name Specify a control
record name.

In a record description entry, line, control, and chart records can
be defined. For information about how to define and use line and
control records, see “Program Specifications.”

A record description statement defined in a chart record can be
fetched from form descriptors with a COPY statement with
XMDLIB specified as a library-name at compile time. For details
on the record description statement to be expanded, see
“Program Specifications.”

PROCEDURE DIVISION

Execute an input-output statement in the following sequence:

1. OPEN statement with OUTPUT specified: Starts printing.

2. WRITE statement: Writes data.

3. CLOSE statement: Stops printing.

OPEN and CLOSE Statements

Use an OPEN statement once at the start of printing and a
CLOSE statement once at the end of printing.

WRITE Statement

In a WRITE statement, the line record, control record, and chart
record can be output. The output of these records makes page 1
either a fixed form page or an irregular form page. In a fixed
form page, the layout and chart record are defined by form

312 Chapter 8. Printing

descriptors and the line record can be printed. The irregular form
page is not defined by form descriptors, therefore only the line
record can be printed because it acts in the same manner as the
print FORMAT phrase none file.

When the chart record and the line record exist together on a
fixed form page, the form descriptors defining the chart record
should be set in the CONTROL RECORD phrase of the file
description paragraph.

When the control record has a blank immediately after the
execution of an OPEN statement and the form descriptor name is
output, the page becomes an irregular form page. In order to
become a fixed form page, the form descriptors defining the chart
record should be set in the FORMAT phrase of the file control
description paragraph.

The fixed or irregular form of these pages is maintained on
subsequent pages as long as a WRITE statement changing the
form of the page is not executed.

Pages can be changed if new form descriptors are added. In this
instance, AFTER ADVANCING is specified for a WRITE
statement immediately after the output of the control record. See
“Program Specifications” for the ADVANCING specification of a
WRITE statement.

When executing a WRITE statement without the AFTER
ADVANCING PAGE phrase, the first print line is not validated.
In this case, printing is started from the first printable line of the
printer.

Using Special Registers

Attributes of data items defined by form descriptors can be
changed by using special registers.

There are three special registers that can be used.

Chapter 8. Printing 313

EDIT-MODE

To specify whether or not output processing should occur.

EDIT-OPTION

To specify underlines and overstrikes.

EDIT-COLOR

To specify color.

These special registers are modified by the data name defined by
the form descriptors. For example, to edit the color of data name
A, use "EDIT-COLOR OF A". Refer to “Special Registers Used
with Presentation File Module” in Appendix E for the values set
in special usage of each register.

Note: A special register cannot be used by form descriptors
where the item control part none is specified. Additionally, form
descriptors where the item control part none is specified and the
item control part is specified cannot be used together in a single
program.

Program Compilation and Linkage

Compilation

Select the compiler option FORMLIB, and specify the directory
name of the form descriptors storage file.

Linkage

There are no libraries that need to be linked.

314 Chapter 8. Printing

Program Execution

To execute a program that uses form descriptors with a print file,
FORM RTS requires a printer information file. For details about
how to generate a printer information file, see “Generating
Printer Information Files.”

The following environments must be set to execute a program
that uses form descriptors with a print file:

• Add the directory containing FORM RTS to environment
variable PATH.

• Generate a printer information file to be used by FORM RTS,
and assign the file according to the contents of the ASSIGN
clause. For information about how to assign a file, refer to
“Assigning Files” in Chapter 7, because it is the same as
assigning ordinary files. For details on a printer information
file and how to generate it, refer to the FORM RTS online
help.

When a printer information file is specified with a relative path
name, it is retrieved in the following sequence:

1. Directory set for environment variable MEFTDIR

2. Current directory

The following is an example showing form descriptors used with
a print file.

Contents of the ASSIGN clause in a COBOL program:

ASSIGN TO PRTFILE

Contents of the initialization file(COBOL85.CBR):

:
PRTFILE=C:\DIR\MEFPRC
:

Chapter 8. Printing 315

Assign a printer information file to the file-identifier specified in
the ASSIGN clause of a COBOL program.

To use a form overlay pattern in form descriptors, set the extents
of the path and file names of the directory where the form
overlay pattern is stored for the printer information file. In this
case, the extents set in run-time environment information
FOVLDIR and OVD_SUFFIX have no effect.

Using Presentation Files (Printing Forms)

This section explains how to print forms using a presentation file.
For information about operation environments, refer to
“Operation Environments” in Chapter 9, because they are the
same as when executing screen input-output with a presentation
file.

316 Chapter 8. Printing

Outline

The presentation file module prints forms in the forms format
defined with Power FORM (form descriptors). Form descriptors
are generated with a screen image.

Data items defined in form descriptors can be included in a
COBOL program at compile time by using a COBOL COPY

Chapter 8. Printing 317

statement. Thus, you do not have to write data item definitions
for printing forms in a COBOL program.

The attributes of output data defined in form descriptors can be
changed during execution of a program by using a COBOL
special register.

Figure 97. Using a COBOL special register to change output data

Work Procedures

To print forms with the presentation file module, form
descriptors, COBOL source programs, and printer information
files are required.

Generate form descriptors and COBOL source programs before
compile time, and print information files before execution.

318 Chapter 8. Printing

The following is the standard order of work procedures for
printing forms with the presentation file module:

1. Generate form descriptors with FORM or Power FORM.

2. Generate COBOL source programs by using a text editor.

3. Compile and link COBOL source programs to generate
executable programs.

4. Generate printer information files with a text editor.

5. Execute the executable programs.

Generating Form Descriptors

This section describes how to generate form descriptors used by
the presentation file module.

For detailed FORM functions and how to use FORM, refer to the
“FORM V1.3 Manual.”

Chapter 8. Printing 319

The following table lists information to be set to generate form
descriptors.

Table 27. Information to be set to generate form descriptors

Information Type Details and Use of Specification
Required File name Specify the name of a file in which form descriptor is

stored.
Definition size Specify the forms size with the numbers of lines and

columns.
Descriptors format Specify the free format.
Data item Specify the data item to set print data. This item name is

used as a data-name when writing a COBOL program.
Item group Put one or more item to be printed at a single run of print

processing into one item group. This item group name is
used when writing a COBOL program.

Optional Item control field Specify a 5-byte item control field if the contents of form
descriptors need to be changed with a special register in a
COBOL program.

The item control field is information appended to data items
defined in form descriptors, and is classified into three input-
output options:

• Sharable (3 bytes)

• Non-sharable (5 bytes)

• None

When a special register in a COBOL program is used, 5 bytes
must be specified.

Program Specifications

This section explains how to write programs when printing
forms with the presentation file module for each COBOL
division.

320 Chapter 8. Printing

ENVIRONMENT DIVISION

ENVIRONMENT DIVISION defines a presentation file. In the
presentation file, as with defining an ordinary file, write a file
control entry in the FILE-CONTROL paragraph of the INPUT-
OUTPUT section.

The following table lists the contents to be written in the file
control entry. These information values can be determined
regardless of the contents of form descriptors generated with
FORM or Power FORM.

Table 28. Information to be specified in a file control entry

Location Information
Type

Details and Use of Specification

Required SELECT clause File name Write the name of a file to use in a COBOL
program, conforming to the rules of
COBOL user-defined words.

ASSIGN clause File-
reference-
identifier

Specify this item in the format of "GS- file-
identifier". This file-identifier is the
environment variable to set the path name
of the printer information file used by the
connection product at execution.

FORMAT clause Data-name Specify a data-name defined as an 8-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. For this
data-name, specify the name of form
descriptors during forms printing.

GROUP clause Data-name Specify a data-name defined as an 8-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. For this
data-name, specify the item group name to
be output during forms printing.

SYMBOLIC
DESTINATION
clause

Specification
of the output
destination

Specify "PRT".

Chapter 8. Printing 321

Table 28. Information to be specified in a file control entry (cont.)

Location Information
Type

Details and Use of Specification

Optional FILE STATUS
clause

Data-name Write the data-name defined as a 2-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. The
input-output execution result is set for this
data-name. For value to be set, see
Appendix B, “I-O Status List.” For detail
information, specify a 4-byte alphanumeric
data item.

PROCESSING
MODE clause

Data-name Specify the data-name defined as a 2-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. For this
data-name, set in input-output processing
type during forms input-output. See Table
29.

UNIT
CONTROL
clause

Data-name Specify the data-name defined as a 6-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. For this
data-name, set the control information of
input-output processing at printing. See
Table 29.

Table 29. Input-output processing types and specification values

Processing Type Value Control Information
Printer control "CT" Form feed "PAGE"
Partition output "PW" Output after feeding

nnn lines
"Annn"

Feed nnn lines after
output

"Bnnn"

Output at line
number nnn

"Pnnn"

Line movement
output

"FW" Move backward by
nnn lines

"Annn"

Move forward by
nnn lines

"Snnn"

322 Chapter 8. Printing

DATA DIVISION

In the DATA DIVISION, write chart record definitions and the
definitions of data-names specified in the file control entry.

A record description statement defined in a chart record can be
fetched from form descriptors with a COPY statement with
XMDLIB specified as a library-name. For details of the record
description statement to be expanded, see “Program
Specifications.”

 PROCEDURE DIVISION

Like ordinary file processing, use input-output statements for
printing forms. Execute input-output statements in the following
sequence:

1. OPEN statement with I-O specified: Starts printing.

2. WRITE statement: Outputs data.

3. CLOSE statement: Stops printing.

OPEN and CLOSE Statements

Use an OPEN statement once at the start of printing and a
CLOSE statement once at the end of printing.

WRITE Statement

One WRITE statement prints one form.

The name of form descriptors used for printing must be set for
the data-name specified in the FORMAT clause before executing
a WRITE statement.

With a WRITE statement, data items in an item group set for the
data-name specified in a GROUP clause are eligible for printing.
By setting a value in a special register before executing a WRITE

Chapter 8. Printing 323

statement, the data item attributes can be changed. For details
about how to use a special register, see “Program Specifications.”

Program Compilation and Linkage

Compiling

Select compiler option FORMLIB, and specify the path name to
the directory of the file containing form descriptors.

Linking

There are no libraries that need to be linked.

Generating Printer Information Files

This section describes how to print forms with the presentation
file module. For details on printer information files and how to
generate them, refer to the FORM RTS online help.

The following table lists information to be entered in a printer
information file.

Table 30. Information to be entered in a printer information file

Information Type Details and Use of Specification
PRTDRV Specify the device name of the output printer

device.
PRTDEV Specify the printer model name of the output

printer device.
MEDDIR Specify the path name to the directory containing

form descriptors.
MEDSUF Specify the extension of form descriptor files. When

the specification of the extension is omitted, the
default value of FORM RTS is used.

324 Chapter 8. Printing

Program Execution

The following environments must be set to execute a program
that prints forms with the presentation file module:

• When using FORM RTS:

− Add the directory containing FORM RTS to environment
variable PATH.

− Set the name of the printer information file with the file-
identifier as an environment variable name.

 When a printer information file is specified with a relative
path name, it is retrieved in the following sequence:

1. Directory set for environment variable MEFTDIR

2. Current directory

• When using MeFt/NET (32):

− Add the directory containing MeFt/NET-SV to
environment variable PATH.

− Set the printer information file name with the file-identifier
as an environment variable name. The actual printer
information file must be prepared for Windows 3.1.

− Specify an environment variable indicating that
MeFt/NET is used as a connector. There are two
specification methods:

• Set "MEFTNET" for the connector name with the file-identifier
as an environment variable name.

• Set "MEFTNET" for environment variable
@CBR_PSFILE_PRT.

For details on how to set MEFTNET, refer to “Format of Run-
time Environment Information” in Chapter 5.

Chapter 8. Printing 325

Examples of how to print forms with the presentation file
module are shown below.

Contents of the ASSIGN clause in a COBOL program:

ASSIGN TO GS-PRTFILE

Contents of the initialization file (COBOL85.CBR):

(When using FORM RTS)

:
PRTFILE=MEFPRC
:

(When using MeFt/NET (32))

:
PRTFILE=MEFPRC,MEFTNET
:

Assign a printer information file to the file-identifier specified in
the ASSIGN clause of a COBOL program. In the example using
FORM RTS, the printer information file is retrieved from the
directory set for environment variable MEFTNETDIR because the
file is assigned with a relative path specification.

326 Chapter 8. Printing

Chapter 9. Input-Output Using
Screens

This chapter explains how to display screens and enter data from
the displayed screens. Chapter 9 also describes how to use
presentation files, work procedures, and the screen handling
function.

328 Chapter 9. Input-Output Using Screens

Types of Input-Output Using Screens

A COBOL program allows you to display a screen where you can
enter data. This is referred to as screen input-output. The
following two types of screen input-output functions are
provided:

• Presentation file function

• Screen handling function

The following table lists the features and uses of the presentation
file and screen handling functions.

Table 31. The features and uses of the presentation file and screen handling
functions

Feature and Use Presentation File Function Screen Handling
Function

Feature Screen design Designs a screen based on
screen image (using FORM).

Designs a screen as a
collection of lines.

Number of screens Defines the number of
presentation files in a program.

One

Changing screen
attributes during
program execution

Enabled Enabled

Program
specification
contents

- Presentation file definition
- Presentation record definition
- OPEN statement
- READ statement
- WRITE statement
- CLOSE statement

- Screen definition
- ACCEPT statement
- DISPLAY statement

Related products FORM (screen definition)
FORM RTS (LOCAL Input-
Output processing)
MeFt/NET (REMOTE Input-
Output processing)

None

Use Used for screen input-output
with complex screens
(for example, form, slip)

Used for screen input-
output simple screens

Chapter 9. Input-Output Using Screens 329

Using Presentation Files (Screen Input-
Output)

This section outlines how the presentation file module is used for
screen input-output, explains how to establish operation
environments, and describes how to generate screen descriptors
and COBOL source programs. For sample programs of screen
input-output using the presentation file module, refer to the
“Getting Started with Fujitsu COBOL” guide.

Outline

The presentation file module performs screen input-output using
screens (screen descriptors) defined with FORM. Screen
descriptors are generated with a screen image with FORM.

Data items for input-output processing defined in the screen
descriptors can be included in a COBOL program at compile time
with a COBOL COPY statement. Therefore, you do not specify
data item definitions for input-output processing in a COBOL
program.

The attributes of data defined in the screen descriptors can be
changed during execution of a program with a COBOL special
register.

Operation Environments

To use the presentation file (screen input-output) module, screen
descriptors generated with FORM are required. The following
figure shows how an executable file is generated.

330 Chapter 9. Input-Output Using Screens

 Figure 98. Generating a program using the presentation file module

Chapter 9. Input-Output Using Screens 331

To use the presentation file function, both the screen descriptors
and FORM RTS are required.

Figure 99. Operating a program using the presentation file module

*1 Besides Windows NT, the function is available with UXP/DS, Sun and HP-
UX. For UXP/DS, FORM RTS is also required

332 Chapter 9. Input-Output Using Screens

Work Procedures

To perform screen input-output with the presentation file
module, screen descriptors, COBOL source programs, and
window information files are required. The screen descriptors
and COBOL source programs must be generated before
compilation, and window information files must be generated
before execution.

The following is the standard work procedure of screen input-
output with the presentation file module:

1. Generate screen descriptors with FORM.

2. Generate COBOL source programs with a text editor.

3. Compile and link COBOL source programs to generate
executable programs.

4. Generate window information files with a text editor.

5. Execute the programs.

Generating Screen Descriptors

This section describes how to generate screen descriptors used by
the presentation file module. For detailed FORM functions and
how to use FORM, refer to the “FORM V1.3 Manual.”

The following table lists information to be entered for screen
descriptors.

Chapter 9. Input-Output Using Screens 333

Table 32. Information to be entered for screen descriptors

Information Type Details and Use of Specification
Required File name Specify the name of a file in which screen descriptor is

stored.
Definition size Specify the screen size with the numbers of lines and

columns.
Descriptors format Specify the free format.
Data item Specifies the area for screen input-output. The item

name specified here is used as a data-name in the
COBOL program specifications.

Item group Groups one or more items (displayed or entered once
per input-output group. The group name specified
here is used in the COBOL program specifications.

Optional Item control field Specify a 5-byte item control field if the contents of
screen descriptors need to be changed with a special
register in a COBOL program.

Attention
information

Specifies to decide an input key in the COBOL
program.

The item control field is information appended to data items
defined in screen descriptors, and is classified into three options:

• Sharable (3 bytes)

• Non-sharable (5 bytes)

• None (for input and output)

Program Specification

This section explains how to use the presentation file module for
each COBOL division.

ENVIRONMENT DIVISION

The presentation file is defined in the ENVIRONMENT
DIVISION.

334 Chapter 9. Input-Output Using Screens

To define the presentation file, specify a file control entry in the
FILE-CONTROL paragraph of the INPUT-OUTPUT section. This
is the same as when you define an ordinary file.

The following table lists the contents to be written in the file
control entry. These values can be determined regardless of the
definition contents of screen descriptors generated with FORM.

Table 33. Information to be specified in a file control entry

Location Informatio
n Type

Details and Use of Specification

Required SELECT clause File name Specifies the presentation file name to be
used in the COBOL program This file name
must conform to the COBOL user-defined
word rules.

ASSIGN clause File-
reference
identifier

Specify this item in the format of "GS- file-
identifier". This file-identifier is the
environment variable to set the path name
of the printer information file used by
FORM RTS at execution.

FORMAT
clause

Data-name Specify a data-name defined as an 8-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. For this
data-name, specify the name of screen
descriptors during screen input-output.

GROUP clause Data-name Specify a data-name defined as an 8-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. For this,
specify the item group name to be input or
output.

Chapter 9. Input-Output Using Screens 335

Table 33. Information to be specified in a file control entry (cont.)

Location Information
Type

Details and Use of Specification

Optional SYMBOLIC
DESTINATION
clause

output
destination

Specify "DSP." (This clause can be omitted,
since "DSP" is the default value of this
clause.)

FILE STATUS
clause

Data-name Specify a data-name defined as a 2-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. The
execution results of input-output processing
are set in this data name. For value to be set,
see Appendix B, “I-O Status List.” For detail
information, specify a 4-byte alphanumeric
data item.

PROCESSING
MODE clause

Data-name Specify a data-name defined as a 2-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. The
processing class of screen input- output
processing is set in this data-name. See Table
34.

SELECTED
FUNCTION
clause

Data-name Specify a data-name defined as a 4-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. The
attention information returned upon READ
statement completion is set in this data-
name. See Table 35.

UNIT
CONTROL
clause

Data-name Specify a data-name defined as a 6-byte
alphanumeric data item in the WORKING-
STORAGE or LINKAGE section. For this
data-name, specify the unit control
information during screen input-output. See
Table 34.

336 Chapter 9. Input-Output Using Screens

Table 34. Input-output processing types and specification values

Processing Mode Control Information
Input Ordinary entry Blank None

Non-erasing entry "NE"
Entry after alarm "AL"
Full screen
erasing entry

"CL"

Change
notification entry

"NI"

Change
notification entry
after alarm

"AI"

Output Normal output Blank None

No erasing output "CL"
Selection of menu
item disability

"PF" Menu item Attention
information

Selection of menu
item

"PN"

Terminal control
output

"CT" Start preentry "BSTR"

End preentry "BSTP"
Clear preentry buffer "BCLR"
Buzzer type: High tone "BZ1"
Buzzer type: Low tone "BZ2"

Table 35. Attention information values and attention types

Attention Information Value Attention Type
Customized values (*1) Value specified by user at screen definition
"C000" Clear key
"E000" Execution key (*2)
"E000" Data full key
"E000" Item escape key
*1 Includes such items as function keys and menu items.
*2 This key is assigned as the for window information files. For details, refer to the FORM
RTS online help.

Chapter 9. Input-Output Using Screens 337

DATA DIVISION

In DATA DIVISION, presentation record definitions and data
items specified in the file control entry are defined.

A record description statement defined in a presentation record
can be fetched from screen descriptors with a COPY statement
with XMDLIB specified as a library-name.

The details of the record description statement to be expanded
are explained below.

Figure 100. Expanding a record description statement

PROCEDURE DIVISION

The input-output statements are used for screen input-output
processing the same as for ordinary file processing.

338 Chapter 9. Input-Output Using Screens

Input-output processing is executed in the following order:

1. OPEN statement with I-O phrase specified: Starts screen
input-output processing.

2. READ and WRITE statements: Screen input-output
processing.

3. CLOSE statement: Stops screen input-output processing.

OPEN and CLOSE Statements

Use an OPEN statement once at the start of screen input-output
processing and a CLOSE statement once at the end of screen
input-output processing.

READ or WRITE Statements

To display a screen, use a WRITE statement with a presentation
record specified.

To read data from a screen, use a READ statement with a
presentation record specified.

Before executing a WRITE statement, the screen descriptors
name must be set for a data-name specified in a FORMAT clause,
and an item group name be set for a data-name specified in a
GROUP clause.

Data items in an item group set for a data-name specified in a
GROUP clause are eligible for input-output.

By setting values in special registers before executing a WRITE or
READ statement, the attributes of data items in presentation
records can be changed. For values to be set for special registers,
refer to “Special Registers Used with the Presentation File
Module” in Appendix E.

If an error is found in input data while executing a READ
statement, and a re-input request order has been defined in

Chapter 9. Input-Output Using Screens 339

screen descriptors, screen display and input editing to enable re-
input are repeated until the error is cleared.

When no error is found or no re-input request order has been
defined, the input edit result is posted to a COBOL program. In
addition, attention information is posted to a data-name specified
in a SELECTED FUNCTION clause.

After executing a READ statement, the input result is returned to
special register EDIT-STATUS. For the values to be set, refer to
“Special Registers Used with the Presentation File Module” in
Appendix E.

How to Use Special Registers

The attributes of data items defined with screen descriptors can
be changed with special registers. Multiple screen descriptors
with control fields that have different sizes cannot coexist. The
five types of special registers are as follows:

• EDIT-MODE: Specify whether items are eligible for output
processing.

• EDIT-OPTION: Specify emphasis, underline, and reverse
display.

• EDIT-COLOR: Specify a color.

• EDIT-STATUS: Specify whether items are eligible for input
processing. In addition, input results are posted.

• EDIT-CURSOR: Specify a cursor position.

Use these special registers with modification of data-names
defined with screen descriptors. For example, write EDIT-
COLOR OF A for the color of data-name A.

For the values to be set for special registers, refer to “Special
Registers Used for the Presentation File Module” in Appendix E.

340 Chapter 9. Input-Output Using Screens

With 3-byte screen and form descriptors where item control
fields are shared in input and output processing, EDIT-MODE,
EDIT-STATUS, EDIT-CURSOR, and EDIT-OPTION use the same
storage area for items defined in the screen and form descriptors.
For example, EDIT-MODE OF A and EDIT-STATUS OF A, and
EDIT-CURSOR OF A and EDIT-OPTION OF A both use the
same storage area.

Program Compilation and Linkage

Compilation

Select compiler option FORMLIB, and specify the path name to
the directory containing the screen descriptors file.

Linkage

No libraries need to be linked.

Generating Window Information Files

This section describes how to generate a window information file
to perform screen input-output processing with the presentation
file module. For details on window information files and how to
generate them, refer to the FORM RTS online help. The following
table lists information to be set in a window information file.

Table 36. Information to be set in a window information file

Information
Type

Details and Use of Specification

Required MEDDIR Specify the path name to the directory containing
screen descriptors.

Optional MEDSUF Specify the extension of the file containing screen
descriptors. When the specification of the extension is
omitted, the default value of FORM RTS is used.

MEDCNT Specify the number of registrations of screen
descriptors. The default value is 10.

Chapter 9. Input-Output Using Screens 341

Program Execution

The following environments must be set to execute a program
that performs screen input-output processing using the
presentation file module:

• When using FORM RTS:

− Add the directory containing FORM RTS to environment
variable PATH.

− Set the name of the window information file with the file-
identifier as an environment variable name.

When a window information file is specified with a relative
path name, it is retrieved in the following sequence:

1. Directory set for environment variable FORM RTSDIR

2. Current directory

• When using MeFt/NET (32):

− Add the directory containing MeFt/NET-SV to
environment variable PATH.

− Set the name of the window information file with the file-
identifier as an environment variable name. The window
information file must be prepared for Windows 3.1. The
name of the window information file must be the same as
the file-identifier defined in the program.

− Specify an environment variable indicating that
MeFt/NET is used as a connector. There are the following
two specification methods:

• Set "MEFTNET" for the connector name with the file-identifier
as an environment variable name.

342 Chapter 9. Input-Output Using Screens

• Set "MEFTNET" for environment variable
@CBR_PSFILE_PRT.

For details on how to set MEFTNET, see “Environment
Variables” in Chapter 5.

The following example shows how to perform screen input-
output with the presentation file module.

Contents of the ASSIGN clause in a COBOL program:

ASSIGN TO GS-DSPFILE

Contents of the initialization file:

(When using FORM RTS)

:
:

DSPFILE=C:\DIR1\MEFWRC
:
:

(When using MeFt/NET (32))

:
:

DSPFILE=MEFWRC,MEFTNET
:
:

Assign a window information file to the file-identifier specified in
the ASSIGN clause of a COBOL program.

Display File Input Interruption

When MeFt is called from other applications, the system waits
for input and the display can be interrupted. (This is true only
when MeFt is used). Refer to “COBOL-Supported Subroutine” in
Appendix N for details.

Chapter 9. Input-Output Using Screens 343

Using the Screen Handling Function

This section explains how to perform screen input-output using
the screen handling function. For sample programs using the
screen handling function, refer to the “Getting Started with
Fujitsu COBOL” guide.

344 Chapter 9. Input-Output Using Screens

Outline

The screen handling function displays a screen with a DISPLAY
statement and inputs data from a screen with an ACCEPT
statement.

The screen layout is defined in a screen data description entry in
the SCREEN section in the DATA DIVISION. A screen item
defined in the SCREEN section is arranged on the screen with the
line and column numbers.

Figure 101. Screen item defined in the SCREEN section

Screen Windows

One screen window to perform screen input-output with the
screen handling function is generated per run unit. Screen

Chapter 9. Input-Output Using Screens 345

windows are generated by the first ACCEPT or DISPLAY
statement executed, and closed when the run unit is terminated.

Although the size of the logical screen of this window is
normally 24 lines and 80 columns, it can be changed with run-
time environment information @ScrnSize.

You can specify whether to close this window automatically or
close after message confirmation with run-time environment
information @WinCloseMsg.

The following table lists window attributes that can be changed
at execution time. For details about how to specify run-time
environment information, see “Setting Run-time Environment
Information” in Chapter 5.

Table 37. Changing window attributes for screen handling

Attribute Run-time
Environment
Information

Setting
Value

Meaning

Automatic
window closing

@WinCloseMsg ON Closes the window after
displaying a message.

(*1)
OFF Closes the window without

displaying a message.
Window size @ScrnSize (m,n) Specifies the size of a logical

screen with the number of
columns (m) and lines (n).

*1 This run-time environment information is also valid for console windows used with the
ACCEPT/DISPLAY function.

User-Defined Function Keys

The screen handling function invalidates the input of specific
function keys and corresponding processing in programs to
specified function keys.

To use a function key when executing a program, define the
function key with the run-time environment variable
TERMINATOR. Data input from the screen cannot be ended by

346 Chapter 9. Input-Output Using Screens

using a function key invalidated by the run-time environment
variable TERMINATOR.

In a program, information on the input function key is set for
data items specified in the CRT STATUS clause in the SPECIAL-
NAMES paragraph. For details about how to set the run-time
environment variable TERMINATOR, refer to “Setting Run-time
Environment Information” in Chapter 5.

Program Specification

This section explains how to write programs using the screen
handling function for each COBOL division.

ENVIRONMENT DIVISION

The following information can be entered in the SPECIAL-
NAMES paragraph:

• Data items for setting or receiving cursor positions in the
CURSOR clause.

• Data items for receiving screen input-output status in the
CRT STATUS clause. The following table lists values set for
these data items.

Chapter 9. Input-Output Using Screens 347

Table 38. Screen input-output status values

Status Key 1
(1st Character)

Status Key 2
(2nd Character)

Meaning

"0" "0" A termination key was entered by the operator.
"1" The last item was entered.

"1" 0x00-0xff A user-defined function key was entered. (A
function key number is set for status key2.) (*1)

"2" 0x00-0xff A system-defined function key was entered. (A
function key number is set for status key2.) (*2)

"9" 0x00 No input item was found. (Error)
*1 A user-defined function key is a function key defined using the run-time environment
variable TERMINATOR.
*2 A system-defined function key is a function key not defined using the run-time
environment variable TERMINATOR.

DATA DIVISION

The SCREEN section is written at the end of the DATA
DIVISION.

The SCREEN section has literal, input, output, update, and
input-output items. These items are classified based on coding of
the screen data description entry.

The following table lists relationships between screen item
attributes and clauses that can be specified in the screen data
description entry. For information about how to code the screen
data description entry, refer to the “COBOL85 Reference
Manual.”

Data items defined in the BASED-STORAGE section cannot be
specified in the SCREEN section.

348 Chapter 9. Input-Output Using Screens

Table 39. COBOL clauses specified for screen items

Purpose COBOL Clause Screen Item
Attribute *1 *2
L I O U IO G E

Emphasis Display in high
intensity

HIGHLIGHT
clause

o o o o o x o

Display in low
intensity

LOWLIGHT
clause

o o o o o x o

Display with
blinking

BLINK clause ∆ ∆ ∆ ∆ ∆ x ∆

Display with
underline

UNDERLINE
clause

o ∆ o o o x o

Color Specify
background color

BACKGROUND-
COLOR clause

o o o o o o o

Specify
foreground color

FOREGROUND-
COLOR clause

o o o o o o o

Reverse
background and
foreground
colors

REVERSE-VIDEO
clause

o o o o o x o

Sound Sound an audio
tone

BELL clause o ∆ o o o x o

Expression
format

Display a blank
for zero

BLANK WHEN
ZERO clause

x ∆ o o o x o

Specify
justification

JUSTIFIED clause x o o o o x o

Specify operation
sign position

SIGN clause x o o o o o o

Chapter 9. Input-Output Using Screens 349

Table 39. COBOL clauses specified for screen items (cont.)

Purpose COBOL Clause Screen Item
Attribute *1 *2

Display
method

Specify full-
screen erasure

BLANK SCREEN
clause

o ∆ o o o o o

Specify partial
screen erasure

ERASE EOS clause o ∆ o o o x o

Specify full-line
erasure

BLANK LINE
clause

o ∆ o o o x o

Specify partial
line erasure

ERASE EOL clause o ∆ o o o x o

Specify non-
display status

SECURE clause x o x x x o o

Position Specify column
number

COLUMN
NUMBER clause

o o o o o x o

Specify line
number

LINE NUMBER
clause

o o o o o x o

Input Specify input
mode

FULL clause x o ∆ o o o o

Specify input
mode

REQUIRED clause x o ∆ o o o o

Others Automatic cursor
skip

AUTO clause x o ∆ o o o o

Specify general
characteristics

PICTURE clause x o o o o x o

Specify
expression
format

USAGE clause x o o o o o o

Specify literal
item

VALUE clause o x x x x x o

o : Can be specified
∆ : Can be specified, but not validated
x : Cannot be specified
*1 L: Literal, I: Input, O: Output, U: Update, IO: Input-output
*2 Define G (Group) as a group item, and E (Elementary) as an elementary item.

350 Chapter 9. Input-Output Using Screens

PROCEDURE DIVISION

To display a screen, use a DISPLAY statement with a screen item
defined.

After executing a DISPLAY statement, data can be input from a
displayed screen. After input, by referring the values of screen
input-output status set for data-names specified in the CRT
STATUS clause in the SPECIAL-NAMES paragraph, appropriate
processing can be selected.

Program Compilation and Linkage

No compiler options or additional libraries are required.

Program Execution

To define a function key, set the run-time environment variable
TERMINATOR as shown in the following example:

TERMINATOR=PF1-PF4,!PF5-PF12,PF13-PF16

PF1 to PF4 and PF13 to PF16 are valid, but PF5 to PF12 are
invalid.

To change a window attribute, define the run-time environment
information listed in Table 37, “Changing window attributes for
screen handling.” Then, execute the program.

The ACCEPT/DISPLAY statement and screen handling function
operate windows with an ACCEPT or DISPLAY statement, but
use different windows.

With this system, function keys PF10 and PF17 to PF24 are
invalid, regardless of the specification of the run-time
environment variable TERMINATOR.

Chapter 9. Input-Output Using Screens 351

Windows used with the screen handling function cannot be
minimized.

The size of a logical screen must not be smaller than the sizes of
data items defined in the screen items.

Input items are always underlined.

An error occurs when a program is executed if a logical screen
set for run-time environment information @ScrnSize is (number
of columns + 1) * number of lines > 16,250.

352 Chapter 9. Input-Output Using Screens

Chapter 10. Calling
Subprograms (Inter-Program
Communication)

This chapter explains how to call programs from other programs,
or inter-program communication. Chapter 10 contains an outline
of calling relationships, including relation forms and linkages
rules, and describes how COBOL programs call COBOL and
other language programs, such as C and Visual Basic.

354 Chapter 10. Calling Programs (Inter-Program Communication)

Outline of Calling Relationships

This section outlines program calling relationships.

Calling Relationship Forms

COBOL programs can call other programs or can be called from
other programs, as shown in the following figure (1), even if the
other programs are coded in other languages.

COBOL programs, however, cannot be called recursively (2), and
they cannot call themselves (3).

Figure 102. Calling relationship forms

Chapter 10. Calling Programs (Inter-Program Communication) 355

Differences Among Linkage Rules

COBOL85 supports the following linkage rules:

1. COBOL linkage rules

2. C linkage rules

3. Pascal linkage rules (16)

4. STDCALL linkage rules (32)

Items 2-4 are applicable to _cdecl, _pascal, and _stdcall
supported by Microsoft C and Visual C++ compilers.

Table 40. Differences between linkage rules

Linkage Rules Stacking and
Fetching Parameters

Restoring Stack
Pointer (SP)

Calling Name (*1)
and External
Reference Name
Rules

COBOL linkage rules Parameters are
stacked from right to
left, and fetched
from left to right

The calling program
restores the SP

The calling name is
the external
reference name
without modification

C linkage rules The calling name
with "_" prefixed is
the external
reference name

Pascal linkage rules
(16)

Parameters are
stacked from left to
right, and fetched
from right to left

The called program
restores the SP

The calling name is
the external
reference name
without modification

STDCALL linkage
rules (32)

Parameters are
stacked from right to
left, and fetched
from left to right

The calling name
with "_" prefixed and
@###(*2) suffixed is
the external
reference name

*1 When writing a calling name in COBOL, specify case-sensitivity and specify compiler
option NOALPHAL.
*2 ### represents a decimal number that indicates the number of bytes of the parameter.

356 Chapter 10. Calling Programs (Inter-Program Communication)

Linkage Rules and Supporting Compilers

The following table lists the correspondence between the linkage
rules supported by COBOL, and the compilers supporting the
linkage rules.

Table 41. Linkage rules and supporting compilers

Linkage Rules Specification in a CALL Statement, ENTRY
Statement, or PROCEDURE DIVISION

(16) (32)

COBOL linkage rules None o o
C linkage rules WITH C LINKAGE o o
Pascal linkage rules WITH PASCAL LINKAGE o x(*2)
STDCALL linkage
rules

WITH STDCALL LINKAGE x(*1) o

*1 A compile time W error is output, and Pascal linkage rules are assumed.
*2 A compile time W error is output, and STDCALL linkage rules are assumed.

Calling COBOL Programs from COBOL
Programs

This section explains how to call other COBOL programs
(subprograms) from COBOL programs (calling programs).

Calling Method

To call programs from COBOL programs, use the CALL
statement. In the CALL statement, write a program name with a
literal, or specify a data-name and set the name of a called
program in this data-name.

Called programs can be changed at program execution by
specifying the data-name in the CALL statement. Calling
programs by specifying data names in the CALL statement

Chapter 10. Calling Programs (Inter-Program Communication) 357

makes the program structure dynamic between calling programs
and subprograms.

For details of program structure, refer to “Linkage Types and
Program Structure” in Chapter 4.

Secondary Entry Points

An entry point to call programs can be set in the procedures in
COBOL programs. The start point of a program procedure is a
primary entry point, and an entry point set in the middle of a
procedure is a secondary entry point.

Executing the CALL statement with a program name specified
executes a subprogram from the primary entry point.

To execute a subprogram from a secondary entry point, specify
the name of the secondary entry point in the CALL statement the
same way you specify the program name.

To set a secondary entry point in a COBOL program, write an
ENTRY statement. When a program is sequentially executed, the
ENTRY statement is skipped. An ENTRY statement cannot be
written in internal programs.

Returning Control and Exiting Programs

To return control from subprograms to calling programs, execute
the EXIT PROGRAM statement. When the EXIT PROGRAM
statement is executed, control returns immediately after the
CALL statement executed by the calling program.

To quit execution of all COBOL programs, execute the STOP
RUN statement. When the STOP RUN statement is executed,
control returns to the calling source of the COBOL main
program.

358 Chapter 10. Calling Programs (Inter-Program Communication)

Passing Parameters

Parameters can be passed between calling programs and
subprograms.

In a calling program, write data items defined in the FILE,
WORKING-STORAGE, or LINKAGE sections in the USING
phrase of the CALL statement. In a subprogram, write data-
names to receive parameters in the USING phrase of the
PROCEDURE DIVISION header or ENTRY statement.

The order of data-names entered in the USING phrase of the
CALL statement of the calling program corresponds to that of
data names written in the USING phrase of the called
subprogram. Data names need not be the same between the
calling program and subprogram. The attribute, length, and
number of corresponding data items, however, should be the
same.

Figure 103. Order of data-names between calling and called programs

When the contents of parameters of the calling program should
not be changed with the execution of the subprogram, write BY

Chapter 10. Calling Programs (Inter-Program Communication) 359

CONTENT data-name in the USING phrase of the CALL
statement.

Figure 104. BY CONTENT data-name in the USING phrase of the CALL
statement

Sharing Data

By specifying the EXTERNAL clause in the data or file
description entry, the data area can be shared among multiple
external programs. Specifying the EXTERNAL clause gives the
data or file the external attribute. Data having the external
attribute is external data, and a file having the external attribute
is an external file.

Note: The EXTERNAL clause cannot be specified for the
presentation file without OUTPUT mode.

Program maintainability can be improved by generating the
definitions of external data or files as a COBOL library, then
including the data in programs with the COPY statement.

360 Chapter 10. Calling Programs (Inter-Program Communication)

Figure 105. Improving program maintainability by generating data and
file definitions

Return Codes

When control returns to calling programs from subprograms,
return code values can be passed with special register
PROGRAM-STATUS (or RETURN-CODE). Special register
PROGRAM-STATUS is implicitly declared as PIC S9(9) COMP-5,
and you do not have to define it in the program.

When a subprogram writes a value to special register
PROGRAM-STATUS, the value is written to special register
PROGRAM-STATUS of the calling program.

Chapter 10. Calling Programs (Inter-Program Communication) 361

Internal Programs

COBOL programs are classified into external and internal
programs based on the program structure. The outermost
program not included in other programs is an external program.
Programs directly or indirectly included in an external program
are internal programs.

An external program (A) can call its internal program (A1). The
internal program (A1) can call another external program (B) or its
internal program (A11). However, internal programs (C1 and D1)
cannot call outside programs (C and D2) other than common
programs.

Figure 106. Calling sequence

362 Chapter 10. Calling Programs (Inter-Program Communication)

Common Programs

To call an internal program from an outside internal program,
specify a COMMON clause in the PROGRAM-ID paragraph of
the called internal program.

The program with COMMON specified is a common program,
and it can be called from internal programs not including the
program with COMMON specified.

Initial Programs

To place a program in the initial state whenever it is called,
specify an INITIAL clause in the PROGRAM-ID paragraph. This
program is an initial program. When the initial program is called,
the program is always placed in the initial state.

Chapter 10. Calling Programs (Inter-Program Communication) 363

When program F1 is called, the value of DATA01 is always 0.

Valid Scope of Names

To use data items defined by external programs in the internal
programs, specify the GLOBAL clause in the data description
entry. Normally, names are valid only within the same program,
but data items with the GLOBAL clause specified can be used by
internal programs.

External programs cannot use data items with GLOBAL clause
specified in the internal programs.

Notes

If compiler option ALPHAL is valid in both the calling program
and subprogram, literal of the program name is treated as
follows:

• Calling program: A program name specified with a literal in
the CALL statement is always treated as uppercase.

364 Chapter 10. Calling Programs (Inter-Program Communication)

• Subprogram: A program name written in the PROGRAM-ID
paragraph is always treated as uppercase.

When compiling the calling program and subprogram, specify
the same compiler option for each, ALPHAL or NOALPHAL.
Note: Specify compiler option NOALPHAL when using
lowercase letters for a program name.

When compiling the main program, compiler option MAIN must
be specified. When compiling the subprogram, compiler option
NOMAIN must be specified.

Linking C Programs

This section explains how to call C programs (functions) from
COBOL programs, and how to call COBOL programs from C
programs (functions). In this section, C programs (functions) are
simply called C programs.

Calling C Programs from COBOL Programs

This section explains how to call C programs from COBOL
programs.

Calling Method

To call C programs from COBOL programs, specify function
names in the CALL statement of COBOL. When the return
statement is executed in the called C program, control returns
immediately after the CALL statement of COBOL.

Chapter 10. Calling Programs (Inter-Program Communication) 365

Passing Parameters

To pass parameters from COBOL programs to C programs,
specify data-names in the USING clause of the CALL statement.

The parameters to be passed to the C program are the area
addresses or the values of the data names. Specify parameters in
the USING clause of the CALL statement.

The relation between the description of the USING clause and the
contents of parameters is explained below.

When BY REFERENCE Data-Name is Specified: Area Address

The actual argument value that the COBOL program passes to
the C program is the area address of the specified data-name.
Declare a pointer having a data type corresponding to the
attribute of the parameter to be passed as a dummy argument in
the C program. For correspondence between COBOL and C data
types, see Table 42.

When BY CONTENT Data-Name (or Literal) is Specified: Area Address

The actual argument value that the COBOL program passes to
the C program is the address of the area containing the value of
the specified data-name. Declare a pointer having the data type
corresponding to the attribute of the parameter to be passed as a
dummy argument in the C program.

Changing the contents of the area pointed to by the actual
argument in the C program does not change contents of the data
name of the COBOL program.

When BY VALUE Data-Name is Specified: Contents of the Area

The actual argument value that the COBOL program passes to
the C program is the contents of the specified data-name.
Changing the contents of the actual argument in the C program

366 Chapter 10. Calling Programs (Inter-Program Communication)

does not change contents of the data name of the COBOL
program.

Return Codes (Function Values)

Use the PROGRAM-STATUS special register to receive return
codes (function values) from C programs. C function values must
be of the long int type.

Chapter 10. Calling Programs (Inter-Program Communication) 367

368 Chapter 10. Calling Programs (Inter-Program Communication)

When a C program of the short int type is called, C function
values written to the PROGRAM-STATUS special register are
referred to as follows:

 :
 01 return-value-storage-area PIC S9(9) COMP-5.
 01 REDEFINES return-value-storage-area.
 02 function-value PIC S9(4) COMP-5.
 02 PIC 9(4) COMP-5.
 :
 CALL "Cprog" USING PARAM1 PARAM2.
 MOVE PROGRAM-STATUS TO return-value-storage-area.
 IF function-value = 0 THEN ...
 :

The attribute of the PROGRAM-STATUS special register is
applicable to the C long int type. After a C program of the short
int type is called, therefore, the values of special register
PROGRAM-STATUS, if referred to as they are, cannot be referred
to as correct function values.

Calling COBOL Programs from C Programs

This section explains how to call COBOL programs from C
programs.

Calling Method

To call COBOL programs from C programs, specify COBOL
program names in the C function calling format. When the EXIT
PROGRAM statement is executed in the called COBOL program,
control returns immediately after the C program function call.

When the main program (C program) calls a COBOL program,
call JMPCINT2 before calling the first COBOL program, and call
JMPCINT3 after calling the last COBOL program. JMPCINT2 is a
subroutine that initializes COBOL programs. JMPCINT3 is a
subroutine that terminates COBOL programs.

Chapter 10. Calling Programs (Inter-Program Communication) 369

Calling COBOL programs without calling JMPCINT2 and
JMPCINT3 may degrade performance because COBOL program
run-time environments are initialized and terminated every time
COBOL programs are called.

Passing Parameters

To pass arguments from C programs to COBOL programs,
specify actual arguments with C function calls. The values of
actual arguments that can be passed from C programs to COBOL
programs must be storage addresses.

With COBOL programs, by specifying data-names in the USING
clause of the PROCEDURE DIVISION header or the ENTRY
statement, the contents of the area at the address specified for an
actual argument are received.

A CONST type specifier can be designated in the declaration or
definition of a variable at the address specified by an actual
argument. When this happens, do not change the contents of the
area at the address specified by the actual argument.

Return Codes (Function Values)

Values set to special register PROGRAM-STATUS are passed to
C programs as function values. C programs receive the function
values as the long int type.

Correspondence of Data Types

The combination of the attributes of data passed between
COBOL and C programs are optional. The following table lists
the basic correspondence of data items between COBOL and C
programs.

370 Chapter 10. Calling Programs (Inter-Program Communication)

For the COBOL internal format, refer to the “COBOL85 Reference
Manual.” For the C internal expression format, refer to C
language manuals.

Table 42. Correspondence between COBOL data items and C data types

COBOL Data Item C Data Type COBOL Coding Example C
Declaration
Example

Size

Alphabetic or
alphanumeric

char, char
array
type or struct
(structure
type)

77 A PIC X.

01 B PIC X(20).

char A;

char B[20];

1 byte

20 bytes

External decimal
(*1)

char array
type, or struct
(structure
type)

77 C PIC S9(5) SIGN IS
LEADING SEPARATE

char C[6]; 6 bytes

Binary (*2) short int

long int

01 D PIC S9(4) COMP-5

77 E PIC S9(9) COMP-5

short int D;

long int E;

2 bytes

4 bytes
Group item (*3) char, char

array type, or
struct
(structure
type)

01 FGRP
 02 F1 PIC S9(4) COMP-5.
 02 F2 PIC X(4).

Struct
{ short int
F1; char
F2[4];}
FGRP;

6 bytes

Internal floating-
point
(single-precision)
double-precision)

float

double

01 G COMP-1.

01 H COMP-2.

float G;

float H;

4 bytes

8 bytes

*1 The internal format of COBOL external decimal items are character strings consisting of
characters indicating signs and numeric characters. In the C program, therefore, these are
treated as character data but not as numeric data. To handle external decimal items as
numeric data in the C program, the data type must be converted in the C program.
*2 Binary items are applicable to short int or long int of the C program depending on the
number of digits as follows:

- Up to 4 digits: short int
- 5 to 9 digits : long int

A binary item with a fraction part is converted to a floating-point item, then passed.

Chapter 10. Calling Programs (Inter-Program Communication) 371

*3 When declaring group items as structure, note the storage boundary of variables included
in the structure. To align the data item storage boundary with COBOL, specify the
SYNCHRONIZED clause in the data description entry. For details, refer to the “COBOL85
Reference Manual.” For C variable storage boundary alignment, refer to C language
manuals.

Compiling Programs

When calling a C program with the CALL statement with a
literal specified, and if the program is compiled with compiler
option ALPHAL specified, the desired program may not be
called since the program name is always treated as being
uppercase. Specify compiler option NOALPHAL when
compiling programs.

For example:

 CALL "abc".

When compiler option NOALPHAL is specified, program "abc"
is called upon execution of the CALL statement.

When compiler option ALPHAL is valid, program "ABC" is
called upon execution of the CALL statement.

 MOVE "abc" TO A.
 CALL A.

372 Chapter 10. Calling Programs (Inter-Program Communication)

Program "abc" is called regardless of whether or not compiler
option ALPHAL or NOALPHAL is specified.

A COBOL program compiled with compiler option ALPHAL
specified can be called from a C program. If so, the desired
program may not be called since the program name specified in
the PROGRAM-ID paragraph is always treated as being
uppercase. Specify compiler option NOALPHAL when
compiling programs.

For example:

 PROGRAM-ID. abc.

When compiler option NOALPHAL is specified, the program
name is "abc".

When compiler option ALPHAL is valid, the program name is
"ABC".

When compiling a C program to be linked to a COBOL program,
an option with which the DS and SS registers are discriminated
and the memory model is large (for example, Microsoft C
compiler option/ALw) must be specified. (16)

Since COBOL85 supports multiple data segments (you can write
the Data Division of 64 K bytes or more), DS and SS registers do
not always have the same address. The operation, therefore, may
be undefined when a C program operating on the assumption
that DS and SS registers have the same address is called. C run-
time libraries have many functions that process DS and SS on the
assumption that they are the same.

In addition, suppressing stack checks and adding Windows
prologue and epilogue codes to all FAR functions (using
Microsoft C compiler option/Gws) in C programs executed
under the Windows environment must be specified.

When compiling a C program to be linked to a COBOL program,
an option (/Gs) to suppress stack checks and an option (/G3) to

Chapter 10. Calling Programs (Inter-Program Communication) 373

optimize the program for 80386 processor. For details, refer to the
Visual C++ on-line Help. (32)

Because data names used in C and COBOL are the same, the
underscore (_) can be used for the data name.

Linking Programs

Library F1BCOWEP.LIB provided by the COBOL85 run-time
system includes the following functions (16):

• WEP

• LIBENTRY

• LIBMAIN

When linking C programs that call COBOL programs (16), the
file specification order in the LINK command depends on
whether executable files are generated by linking C programs
that call COBOL programs or dynamic link libraries (DLLs) are
generated.

Examples of linking C programs that call COBOL programs are
shown below. To link C programs that call COBOL programs,
link option /NOD must be specified.

 (1) Generating executable files from C programs that call
COBOL programs:

LINK /NOD Cprog.OBJ, Cprog.EXE, Cprog.MAP, Cimplib
LIBW, Cprog.DEF

CPROG.OBJ

C program object file name.

CPROG.EXE

Name of the executable file to be generated.

CPROG.MAP

374 Chapter 10. Calling Programs (Inter-Program Communication)

Map file name (optional).

CIMPLIB

Import library of C run-time library. Refer to a C manual. With
Microsoft C, LLIBCEW is applicable to this import library.

LIBW(.LIB)

Windows function import library name.

CPROG.DEF

C program module definition file name.

F1BCCIMP.LIB is required to call JMPCINT2 or JMPCINT3.

(2) Generating executable files from COBOL programs and C
programs that call COBOL programs:

LINK /NOD COB.OBJ Cprog.OBJ, COB.EXE, COB.MAP, F1BCCIMP
F1BCARMV.LIB
Cimplib LIBW, COB.DEF

COB.OBJ

COBOL program object file name.

COB.EXE

Name of the executable file to be generated.

COB.MAP

Map file name (optional).

F1BCCIMP(.LIB) F1BCARMV.LIB

COBOL run-time system import library name.

CIMPLIB

Import library of C run-time library.

LIBW(.LIB)

Windows function import library name.

Chapter 10. Calling Programs (Inter-Program Communication) 375

COB.DEF

COBOL program module definition file name.

To generate an executable file by linking a COBOL program to a
C program, the import library of the run-time library (COBOL
run-time system) of the program having the WinMain function
must be specified first.

For example, when a COBOL program has the WinMain function
(when compiled with compiler option MAIN specified), specify
the import library of the COBOL run-time system prior to that of
the C run-time library. Doing so prevents the startup routine
provided by the import library of the C run-time library from
being linked to the COBOL program.

(3) Generating DLLs from C programs that call COBOL
programs:

LINK /NOD Cprog.OBJ LIBENTRY.OBJ, Cprog.DLL, Cprog.MAP, Cimplib
LIBW, Cprog.DEF

CPROG.OBJ

C program object file name.

LIBENTRY.OBJ

Name of the initialization function to be dynamically linked.

CPROG.DLL

Name of the DLL to be generated.

CPROG.MAP

Map file name (optional).

CIMPLIB

Import library of C run-time library. Refer to C manuals. With
Microsoft C, LDLLCEW is applicable to this import library.

376 Chapter 10. Calling Programs (Inter-Program Communication)

LIBW(.LIB)

Windows function import library name.

CPROG.DEF

C program module definition file name.

(4) Generating DLLs from COBOL programs and C programs
that call COBOL programs:

LINK /NOD COB.OBJ Cprog.OBJ F1BCOWEP.OBJ, COB.DLL, COB.MAP,
F1BCCIMP
F1BCARMV Cimplib LIBW,COB.DEF

COB.OBJ

COBOL program object file name.

CPROG.OBJ

C program object file name.

F1BCOWEP.LIB

Name of the initialization function to be dynamically linked.

COB.DLL

Name of the DLL to be generated.

COB.MAP

Map file name (optional).

F1BCCIMP(.LIB) F1BCARMV.LIB

COBOL run-time system import library name.

CIMPLIB

Import library of C run-time library.

LIBW(.LIB)

Windows function import library name.

Chapter 10. Calling Programs (Inter-Program Communication) 377

COB.DEF

COBOL program module definition file name.

To generate the DLL, except for the following cases, link
F1BCOWEP.LIB, which contains the DLL initialization function
(LibMain) and the termination function (WEP):

• The C program provides DLL initialization and termination
functions.

• Microsoft C V7.0 or later is used.

To link F1BCOWEP.LIB, specify it in the object field on the
command line.

When linking C programs that call COBOL programs (32), the
file specification order in the LINK command depends on
whether executable files are generated by linking C programs
that call COBOL programs or dynamic link libraries (DLLs) are
generated.

Examples of linking C programs that call COBOL programs are
shown below.

(1) Generating executable files from C programs that call
COBOL programs:

LINK Cprog.OBJ Cimplib /OUT:Cprog.EXE

CPROG.OBJ

C program object file name.

CPROG.EXE

Name of the executable file to be generated.

CIMPLIB

Import library of C run-time library. Refer to C manuals.

F3BICIMP.LIB is required to call JMPCINT2 or JMPCINT3.

378 Chapter 10. Calling Programs (Inter-Program Communication)

(2) Generating executable files from COBOL programs and C
programs that call the COBOL programs:

LINK COB.OBJ Cprog.OBJ F3BICIMP.LIB COB.EXP LIBC.LIB KERNEL32.LIB
USER32.LIB
/OUT:COB.EXE

COB.OBJ

COBOL program object file name.

COB.EXE

Name of the executable file to be generated.

F3BICIMP.LIB

COBOL run-time system import library.

COB.EXP

COBOL program export file generated by the LIB command.

LIBC.LIB KERNEL32.LIB USER32.LIB

C run-time library import library name required by COBOL

To generate an executable file by linking a COBOL program to a
C program, the import library of the run-time library (COBOL
run-time system) of the program having the WinMain function
must be specified first.

For example, when a COBOL program has the WinMain function
(when compiled with compiler option MAIN specified), specify
the import library of the COBOL run-time system prior to that of
the C run-time library. Doing so prevents the startup routine
provided by the import library of the C run-time library from
being linked to the COBOL program.

Chapter 10. Calling Programs (Inter-Program Communication) 379

(3) Generating DLLs from C programs that call COBOL
programs:

(Generating a C program export file):

 LIB /DEF:Cprog.DEF /OUT:Cprog.LIB /MACHINE:IX86

(Generating a COBOL program import library):

 LIB /DEF:COB.DEF /OUT:COB.LIB /MACHINE:IX86

(Generating a DLL):

LINK Cprog.OBJ Cprog.EXP COB.LIB Cimplib /DLL
/OUT:Cprog.DLL

CPROG.DEF

C program module definition file name .

CPROG.LIB

C program import library name.

COB.DEF

COBOL program module definition file name.

COB.LIB

COBOL program import library name.

CPROG.OBJ

C program object file name.

CPROG.DLL

Name of the DLL to be generated.

CPROG.EXP

C program export file.

CIMPLIB

Import-library of C run-time library. Refer to C manuals.

380 Chapter 10. Calling Programs (Inter-Program Communication)

(4) Generating DLLs from COBOL programs and C programs
that call the COBOL programs:

(Generating an export file):

 LIB /DEF:COB.DEF /OUT:COB.LIB /MACHINE:IX86

(Generating a DLL):

LINK COB.OBJ F3BICIMP.LIB COB.EXP LIBC.LIB KERNEL32.LIB
USER32.LIB
/DLL /OUT:COB.DLL

COB.DEF

COBOL program module definition file name.

COB.LIB

COBOL program import library name.

COB.OBJ

COBOL program object file name.

F3BICIMP.LIB

COBOL run-time system import library.

COB.EXP

COBOL program export file generated by the LIB command.

LIBC.LIB KERNEL32.LIB USER32.LIB

C run-time library import library name required by COBOL.

COB.DLL

Name of the DLL to be generated.

Chapter 10. Calling Programs (Inter-Program Communication) 381

Executing Programs

When calling COBOL programs from C programs, no COBOL
run-time options can be specified for arguments of functions that
call COBOL programs. The run-time options are treated the same
as other arguments and are not handled as COBOL run-time
options even if specified.

Do not use the exit function to unconditionally terminate C
programs called from COBOL programs.

Do not use the STOP RUN statement to terminate COBOL
programs called from C programs with JMPCINT2.

Unlike C character strings, no null characters are inserted
automatically at the end of COBOL character strings.

382 Chapter 10. Calling Programs (Inter-Program Communication)

Chapter 11. Using ACCEPT and
DISPLAY Statements

This chapter offers tips on using the ACCEPT and DISPLAY
statements, including I-O destination types and specification
methods, using console windows, message boxes, and program
using files, and entering current date and time. Additionally,
Chapter 11 describes fetching command line arguments and
environment variable handling.

384 Chapter 11. Using ACCEPT and DISPLAY Statements

ACCEPT/DISPLAY Function

This section explains how the ACCEPT/DISPLAY function
inputs and outputs data with ACCEPT and DISPLAY
statements. For a sample program using the ACCEPT/DISPLAY
function, refer to the “Getting Started with Fujitsu COBOL”
guide.

Outline

With the ACCEPT/DISPLAY function, data is input and output
with console windows, message boxes, and files. Additionally,
the current date and time can be read from the system.

Use the ACCEPT statement to input data, and use the DISPLAY
statement to output data.

Figure 107. The ACCEPT/DISPLAY function

Chapter 11. Using ACCEPT and DISPLAY Statements 385

Input/Output Destination Types and Specification
Methods

The input/output destination of data depends on:

• ACCEPT statement FROM specification

• DISPLAY statement UPON specification

• Compiler option specifications

• Setting of run-time environment information

The following table lists the relationship between these
specifications and input/output destinations.

Table 41. Input/output destinations of the ACCEPT/DISPLAY function

FROM or UPON
Specification

Compile Option to be
Specified

Run-time
Environment
Information
Setting

Input/Output Destination

1) None or function-
name
SYSIN/SYSOUT
(*1)

None

SSIN (run-time
environment
information name)

SSOUT (run-time
environment
information name)

Enter a file name
for the run-time
environment
information name

Display unit (console window)

File (*2)

2) Function-name
SYSERR

Enter a blank for
@MessOutFile

Enter a file name
for @MessOutFile

Display unit (message box)

File

3) Function-name
CONSOLE(*1)

Display unit (console window)

386 Chapter 11. Using ACCEPT and DISPLAY Statements

*1 1) and 3) cannot both be used simultaneously in the program through its complete
execution. The direction specified in the first ACCEPT or DISPLAY statement executed in the
program becomes effective.
*2 When SYSIN and SYSOUT are specified for compiler options SSIN and SSOUT as
environment variable names, the input source and output destinations are system standard
input and output.

Reading/Writing Data with Console Windows

This section explains how to write, compile, link, and execute
programs, and provides an example of the simplest coding using
console windows.

IDENTIFICATION DIVISION.
 PROGRAM-ID. program-name.
DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 data-name
PROCEDURE DIVISION.
 ACCEPT data-name.
 DISPLAY data-name.
 DISPLAY "nonnumeric-literal".
 EXIT PROGRAM.
END PROGRAM program-name.

Console Windows

In a console window, data is read from or displayed on a display
unit with the ACCEPT/DISPLAY function. One console window
is provided for each COBOL program run unit.

A console window is generated by the ACCEPT or DISPLAY
statement first executed in the program run unit, and is closed
upon normal termination of the run unit.

The attributes of console windows can be changed with the
COBOL initialization file (COBOL85.CBR). The following table
lists the attributes that can be changed and the specification
methods.

Chapter 11. Using ACCEPT and DISPLAY Statements 387

Table 42. Changing the attributes of console windows

Attribute Run-time Environment
Information

Setting Value Meaning

Automatic window
closing

@WinCloseMsg

(*1)

ON

OFF

Closes the window after
displaying a message

Closes the window
without displaying a
message

Window size @CnslWinSize (m,n) Specifies the size of a
window with the
number of lines (m) and
the number of columns
(n)

Number of lines for
data to be retained

@CnslBufLine Number of lines Data for the number of
specified lines is
retained and can be
browsed by vertically
scrolling the window

*1 This run-time environment information is also valid for windows used with the screen
operation function.

Program Specifications

This section explains the program descriptions for each COBOL
division.

ENVIRONMENT DIVISION

No specifications are required.

DATA DIVISION

In the DATA DIVISION, define data items to store input data
and items to set output data. Define the data items with one of
the following attributes:

• Group item

• Alphabetic item

388 Chapter 11. Using ACCEPT and DISPLAY Statements

• Alphanumeric item

• Binary item

• Internal decimal item

• External decimal item

• Alphanumeric edited item

• Numeric edited item

• National item

• National edited item

National item and national edited item cannot be used in an
ACCEPT statement.

PROCEDURE DIVISION

Use an ACCEPT statement to input data from a console window.
Input data is stored in a data-name specified in an ACCEPT
statement for the length (80 alphanumeric characters if defined as
01 input-data PIC X(80)) defined for the data-name.

If the length of input data is less than that of data to be stored,
the input request is repeated.

For character data, the input request is repeated until the entered
data satisfies the specified length.

For numeric data, the input request is repeated until the Enter or
Return key is pressed.

Use a DISPLAY statement to output data to a console window.

When a data-name is specified in a DISPLAY statement, data
stored in the data-name is output.

When a nonnumeric literal is specified in a DISPLAY statement,
a specified character string is output.

Chapter 11. Using ACCEPT and DISPLAY Statements 389

Program Compilation and Linkage

Do not specify compiler options SSIN and SSOUT.

Program Execution

Execute programs like ordinary programs.

Data input is requested on a console window when an ACCEPT
statement in a program is executed. Enter data as required.

Input data is set for the data item for the length (80 bytes)
specified in an ACCEPT statement. If the length of input data is
less than that of the data item, the input request is repeated.

For character data, the input request is repeated until the entered
data satisfies the specified length.

For numeric data, the input request is repeated until the Enter or
Return key is pressed.

When a DISPLAY statement in the program is executed, data is
output to the console window.

To associate data at one entry with one ACCEPT statement, use
function-name CONSOLE. When function-name CONSOLE is
used, space is filled if the length of input data is less than that of
the data item.

390 Chapter 11. Using ACCEPT and DISPLAY Statements

 IDENTIFICATION DIVISION.
 PROGRAM-ID. A.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 CONSOLE IS CONS.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 data-1 PIC X(80).
 PROCEDURE DIVISION.
 ACCEPT data-1 FROM CONS.
 DISPLAY data-1 UPON CONS.
 EXIT PROGRAM.
 END PROGRAM A.

Writing Messages to Message Boxes

This section explains how to write messages to message boxes.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. program-name.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 SYSERR IS mnemonic-name.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 data-name
 PROCEDURE DIVISION.
 DISPLAY data-name UPON mnemonic-name.
 EXIT PROGRAM.
 END PROGRAM program-name.

Message Boxes

Normally, COBOL program run-time messages are displayed in
message boxes. With a COBOL program, messages other than
run-time messages can also be displayed in the message boxes.
Executing a DISPLAY statement opens a message box, and
clicking on the OK button closes it.

Chapter 11. Using ACCEPT and DISPLAY Statements 391

Program Specifications

This section explains program descriptions for each COBOL
division.

ENVIRONMENT DIVISION

In the ENVIRONMENT DIVISION, associate a mnemonic-name
with function-name SYSERR.

DATA DIVISION

In the DATA DIVISION, define data items to set output data.
Define these data items with one of the following attributes:

• Group item

• Alphabetic item

• Alphanumeric item

• External decimal item

• Alphanumeric edited item

• Numeric edited item

• National item

• National edited item

392 Chapter 11. Using ACCEPT and DISPLAY Statements

PROCEDURE DIVISION

To send a message to a message box, use a DISPLAY statement
where a mnemonic-name associated with function-name SYSERR
is specified in the UPON clause.

If a data-name is specified in a DISPLAY statement, data stored
in the specified data-name is output.

If a nonnumeric literal is specified, the specified character string
is output. The maximum length of the message that can be
written at one time is the length of the data that can be displayed
within the message box.

Program Compilation and Linkage

No specific compiler and linker options are required.

Program Execution

Execute programs as ordinary programs.

Programs Using Files

This section explains how to write, compile, link, and execute
programs, and provides an example of the simplest coding for
file processing using the ACCEPT/DISPLAY function.

Chapter 11. Using ACCEPT and DISPLAY Statements 393

 IDENTIFICATION DIVISION.
 PROGRAM-ID. program-name.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 data-name ...
 PROCEDURE DIVISION.
 ACCEPT data-name.
 DISPLAY data-name.
 EXIT PROGRAM.
 END PROGRAM program-name.

Program Specifications

This section explains program descriptions for each COBOL
division.

ENVIRONMENT DIVISION

No specifications are required.

DATA DIVISION

In the DATA DIVISION, define data items to store input data
and items to set output data. Define these data items with one of
the following attributes:

• Group item

• Alphabetic item

• Alphanumeric item

• External decimal item

• Alphanumeric edited item

• Numeric edited item

• National item

• National edited item

394 Chapter 11. Using ACCEPT and DISPLAY Statements

National item and national edited item cannot be used in an
ACCEPT statement.

PROCEDURE DIVISION

At program execution, an input file is opened with the first
ACCEPT statement, and an output file is opened with the first
DISPLAY statement of the program. With subsequent ACCEPT
and DISPLAY statements, data is read or output only.

The input and output files are closed upon termination of
program execution.

The input file is opened in input mode and used in share mode.
Records are not locked during read.

The output file is opened in output mode and used in exclusive
mode.

Line feed characters are not handled as data.

After a file is opened (after executing the first ACCEPT and
DISPLAY statements), the input/output destination cannot be
changed with the environment variable operation function.

Inputting Data

Use an ACCEPT statement to input data from a file.

Data at the byte immediately before the line feed character is
handled as one record.

Input data is read by record. Input data is stored in a data-name
specified in an ACCEPT statement for the length (80
alphanumeric characters if defined as 01 input-data PIC X(80))
defined for the data-name. If the length of input data is less than
that of data to be stored, the next record is read and linked to the
previously read data.

In this case, line feed characters are not treated as data. Records
are read until the entered data satisfies the specified length.

Chapter 11. Using ACCEPT and DISPLAY Statements 395

Figure 108. Reading records

Outputting Data

Use a DISPLAY statement to send data to a file.

When a data-name is specified in a DISPLAY statement, the
contents stored in the data-name is output.

If a nonnumeric literal is specified in a DISPLAY statement, the
specified character string is output. With one DISPLAY
statement, the length of the line feed character plus output data
is the length of data to be output.

Figure 109. Using DISPLAY to output data

396 Chapter 11. Using ACCEPT and DISPLAY Statements

Program Compilation and Linkage

To enter data from a file with ACCEPT, specify compiler option
SSIN. To send data to a file with DISPLAY, specify compiler
option SSOUT.

For example:

 SSIN(INDATA),SSOUT(OUTDATA)

When SYSIN is specified to compiler option SSIN, a console
window is the data input destination of an ACCEPT statement,
regardless of the specification of run-time environment
information SYSIN.

When SYSOUT is specified to compiler option SSOUT, a console
window is the data output destination of a DISPLAY statement,
regardless of the specification of run-time environment
information SYSOUT.

Program Execution

Specify the names of files used for input-output in the run-time
environment information specified for compiler options SSIN
and SSOUT.

For example:

 INDATA=A:\IN.DAT
 OUTDATA=A:\OUT.DAT

If a specified file already exists at the output destination, the file
is recreated (previous data is deleted).

Chapter 11. Using ACCEPT and DISPLAY Statements 397

Entering Current Date and Time

This section explains how to write, compile, link, and execute
programs for entering the current date and time by using system
clocks with the ACCEPT/DISPLAY function.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. program-name.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 date-1 PIC 9(6).
 01 day-1 PIC 9(5).
 01 day-of-week-1 PIC 9(1).
 01 time-1 PIC 9(8).
 PROCEDURE DIVISION.
 ACCEPT date-1 FROM DATE.
 ACCEPT day-1 FROM DAY.
 ACCEPT day-of-week-1 FROM DAY-OF-WEEK.
 ACCEPT time-1 FROM TIME.
 EXIT PROGRAM.
 END PROGRAM program-name.

Programs Descriptions

This section explains program descriptions for each COBOL
division.

ENVIRONMENT DIVISION

No specifications are required.

DATA DIVISION

In the DATA DIVISION, define the data items required to store
input data.

398 Chapter 11. Using ACCEPT and DISPLAY Statements

PROCEDURE DIVISION

To input the current date and time, use an ACCEPT statement in
which DATE, DAY, DAY-OF-WEEK, or TIME are written for the
FROM specification.

Program Compilation and Linkage

No specific compiler and linker options are required.

Program Execution

Execute programs as ordinary programs.

When an ACCEPT statement in a program is executed, the
current date and time are set for the data-name specified in an
ACCEPT statement.

For example: 12-23-1991 (Mon.) 14:15:45.00

Table 43. Entering current date and time

Coding of FROM Specification Contents Set for the Data-Name
FROM DATE |9|1|1|2|2|3|
FROM DAY |9|1|3|5|7|
FROM DAY-OF-WEEK |1|
FROM TIME |1|4|1|5|4|5|0|0|

Chapter 11. Using ACCEPT and DISPLAY Statements 399

Fetching Command Line Arguments

This section explains how to refer to the counts and values of
arguments specified for commands that call programs.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. program-name.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 ARGUMENT-NUMBER IS mnemonic-name-1.
 ARGUMENT-VALUE IS mnemonic-name-2.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 data-name-1
 01 data-name-2
 01 data-name-3
 PROCEDURE DIVISION.
 ACCEPT data-name-1 FROM mnemonic-name-1.
 [DISPLAY numeric literal UPON mnemonic-name-1.]
 [DISPLAY data-name-2 UPON mnemonic-name-1.]
 ACCEPT data-name-3 FROM mnemonic-name-2
 [ON EXCEPTION ...].
 END PROGRAM program-name.

Outline

During program execution, the values of environment variables
can be referred to and updated.

To obtain the number of arguments, use an ACCEPT statement
for which a mnemonic-name corresponding to function-name
ARGUMENT-NUMBER is specified.

To refer to an argument value, use a DISPLAY statement for
which a mnemonic-name corresponding to function-name
ARGUMENT-NUMBER is specified and an ACCEPT statement
for which a mnemonic-name corresponding to function-name
ARGUMENT-VALUE is specified.

400 Chapter 11. Using ACCEPT and DISPLAY Statements

A character string delimited with spaces or quotation marks (") is
counted as one argument.

The following is an example of an input command:

 SAMPLE M.HORIUCHI 901234 SHIZUOKA

Program Specifications

This section explains program descriptions for each COBOL
division when command line argument handling function are
used.

ENVIRONMENT DIVISION

Associate the following function-names with mnemonic-names:

• ARGUMENT-NUMBER

• ARGUMENT-VALUE

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 ARGUMENT-NUMBER IS mnemonic-name-1.
 ARGUMENT-VALUE IS mnemonic-name-2.

DATA DIVISION

Define data items to deliver values.

Table 44. Counts and values of arguments

Contents Attribute
Number of arguments Unsigned integer item
Argument position (not required if
specified with a literal)

Unsigned integer item

Argument value Fixed-length group item or alphanumeric data item

Chapter 11. Using ACCEPT and DISPLAY Statements 401

The following is a definition example of data items:

 DATADIVISION.
 WORKING-STORAGE SECTION.
 01 number-of-arguments PIC 9(2) BINARY.
 01 argument-position PIC 9(2) BINARY.
 01 argument-value.
 02 argument-value PIC X(10) OCCURS 1 TO 10 TIMES
 DEPENDING ON number-of-arguments.

PROCEDURE DIVISION

To obtain the number of arguments, use an ACCEPT statement
where a mnemonic-name corresponding to function-name
ARGUMENT-NUMBER is specified.

To refer to an argument value, first, specify the argument
position with DISPLAY statement (1) corresponding to function-
name ARGUMENT-NUMBER. Then, fetch the value with an
ACCEPT statement (2) corresponding to function-name
ARGUMENT-VALUE.

If the position of a non-existing argument is specified (for
example, 4 is specified although there are only three arguments),
an exception condition occurs and the statement (3) specified for
ON EXCEPTION is executed.

At the start of program execution when a DISPLAY statement is
not executed, the argument position is 1.

For each subsequent execution of the ACCEPT statement, the
argument position is moved to the next argument.

For argument positioning, 0 to 99 can be specified. 0 is the
command itself.

 DISPLAY 5 UPON mnemonic-name-1. ... (1)
 ACCEPT argument-value(5) FROM mnemonic-name-2 ... (2)
 ON EXCEPTION MOVE 5 TO error-number GO TO ERROR PROCESS ... (3)
 END-ACCEPT.

If an argument value is referred to without executing a DISPLAY
statement for positioning, the argument position is 1 at the start

402 Chapter 11. Using ACCEPT and DISPLAY Statements

of program execution. For each subsequent execution of the
ACCEPT statement, the argument position is moved to the next
argument.

The lengths of argument values cannot be obtained.

The rules for the COBOL MOVE statement are applied to the
setting of data items for the number of arguments and argument
values.

 :
 01 number-1 PIC 9.
 01 argument-1 PIC X(10).
 :
 ACCEPT number-1 FROM argument-number. ... (1)
 ACCEPT argument-1 FROM argument-value. ... (2)

If statement (1) is executed when the number of arguments
specified in the command is 10, the contents of "number-1" is 0.

If statement (2) is executed when the value of an argument to be
fetched is "ABCDE", the content of "argument-1" is as follows:

A B C D E Blank Blank Blank Blank

If statement (2) is executed when the value of an argument to be
fetched is "ABCDE12345FGHIJ", the content of "argument-1" is as
follows:

A B C D E 1 2 3 4 5

Program Compilation and Linkage

No specific compiler and linker options are required.

Program Execution

Execute programs as ordinary programs.

This can be used only with a COBOL program activated by the
system.

Chapter 11. Using ACCEPT and DISPLAY Statements 403

With a COBOL program called from another COBOL program,
the value of an argument to be referred to is that of an argument
specified on a command line activated from the system.

Environment Variable Handling Function

This section explains how to refer to and update the values of
environment variables. Environment variables explained in this
section indicate run-time environment information set at
program execution.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. program-name.
 ENVIRONMENT DIVISION
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 ENVIRONMENT-NAME IS mnemonic-name-1.
 ENVIRONMENT-VALUE IS mnemonic-name-2.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 data-name-1
 01 data-name-2
 PROCEDURE DIVISION.
 DISPLAY { "nonnumeric-literal" }
 { } UPON mnemonic-name-1.
 { data-name-1 }

 ACCEPT data-name-2
 FROM mnemonic-name-2 [ON EXCEPTION ...].

 DISPLAY { "nonnumeric-literal" }
 { } UPON mnemonic-name-1.
 { data-name-1 }

 DISPLAY data-name-2
 UPON mnemonic-name-2 [ON EXCEPTION ...].

 END PROGRAM program-name.

Outline

During program execution, the values of environment variables
can be referred to and updated.

404 Chapter 11. Using ACCEPT and DISPLAY Statements

To refer to the value of an environment variable, use a DISPLAY
statement where a mnemonic-name corresponding to function-
name ENVIRONMENT-NAME is specified and an ACCEPT
statement for which a mnemonic-name corresponding to
function-name ENVIRONMENT-VALUE is specified.

To update the value of an environment variable, use a DISPLAY
statement where a mnemonic-name corresponding to function-
name ENVIRONMENT-NAME is specified and a DISPLAY
statement where a mnemonic-name corresponding to function-
name ENVIRONMENT-VALUE is specified.

Programs Specifications

This section explains program descriptions for each COBOL
division when using the environment variables handling
function.

ENVIRONMENT DIVISION

Associate the following function-names with mnemonic-names:

• ENVIRONMENT-NAME

• ENVIRONMENT-VALUE

DATA DIVISION

Define data items to deliver values.

Table 45. Attributes of environment variables

Contents Attribute
Name of an environment variable (not required if specified
with a literal)

Fixed-length group item or alphanumeric
data item

Value of an environment variable (not required if specified
with a literal)

Fixed-length group item or alphanumeric
data item

Chapter 11. Using ACCEPT and DISPLAY Statements 405

PROCEDURE DIVISION

To refer to the value of an environment variable, first, specify the
environment variable name to be referred to with a DISPLAY
statement (1) where a mnemonic-name corresponding to
function-name ENVIRONMENT-NAME is specified. Then, refer
to the value of the environment variable with an ACCEPT
statement (2) where a mnemonic-name corresponding to
function-name ENVIRONMENT-VALUE is specified.

If the name of the environment variable to be referred to has not
been specified or the name of a non-existing environment
variable has been specified, an exception condition occurs. In this
case, a statement (3) specified for ON EXCEPTION is executed.

To update the value of an environment variable, first, specify the
environment variable name to be updated with a DISPLAY
statement (4) where a mnemonic-name corresponding to
function-name ENVIRONMENT-NAME is specified. Then,
update the value of the environment variable with a DISPLAY
statement (5) where a mnemonic-name corresponding to
function-name ENVIRONMENT-VALUE is specified.

If the name of the environment variable to be updated has not
been specified or the area to set the value of the environment
variable cannot be assigned, an exception condition occurs. In
this case, a statement (6) specified for ON EXCEPTION is
executed.

406 Chapter 11. Using ACCEPT and DISPLAY Statements

 DISPLAY "TMP1" UPON environment-variable-name ... (1)
 ACCEPT value-of-TMP1
 FROM environment-variable-value ... (2)
 ON EXCEPTION ... (3)
 MOVE occurrence-of-error TO ...
 END-ACCEPT.
 :
 DISPLAY "TMP2" UPON environment-variable-name. ... (4)
 DISPLAY value-of-TMP2
 UPON environment-variable-value ... (5)
 ON EXCEPTION ... (6)
 MOVE occurrence-of-error TO ...
 END-DISPLAY.

The lengths of environment variables cannot be obtained.

Program Compilation and Linkage

No specific compiler and linker options are required.

Program Execution

Execute programs as ordinary programs.

The value of an environment variable changed during program
execution is valid only in the process being executed by the
program, but is invalid for programs after the process is
terminated.

Chapter 12. Using
SORT/MERGE Statements (Sort-
Merge Function)

Sort rearranges the records in a file according to a certain
sequence, while merge integrates the records in multiple files
into one file. This chapter describes the sort/merge function,
looking at the types of sort and merge processing.

408 Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function)

Outline of Sort and Merge Processing

This section outlines sort and merge processing.

Sort

Sort means that records in a file are rearranged in ascending or
descending order using record information as a sort key. The
records are rearranged according to the attribute of the program
key item.

Figure 110. Sorting records

Merge

Merge means that records in multiple files with records sorted in
ascending or descending order are integrated into one file.

Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function) 409

Figure 111. Merging records

Using Sort

This section explains the types of sort processing and how to
write, compile, and link a program that uses sort processing.

410 Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function)

Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function) 411

Types of Sort Processing

The following four types of sort processing are possible:

1. All records in the input file are sorted in ascending or
descending order, then are written to the output file: (Input)
file (Output) file

2. All records in the input file are sorted in ascending or
descending order, then are handled as output data: (Input)
file (Output) records

3. Specific records or data items are sorted in ascending or
descending order, then are written to the output file: (Input)
record (Output) file

4. Specific records or data items are sorted in ascending or
descending order, and are handled as output data: (Input)
record (Output) record

When sorting records in the input file (file to sort) without
changing their contents, sort processing type 1 or 2 is normally
used. When an input file is not used or the contents of a record is
changed, sort processing type 3 or 4 is used.

When writing sorted records to the output file without
processing the contents of each record, sort processing type 1 or 3
is used. When the output file is not used or the contents of each
record is changed, sort processing type 2 or 4 is used.

Program Specifications

This section explains the contents of a program that sorts records
for each COBOL division.

412 Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function)

ENVIRONMENT DIVISION

The following files must be defined.

• Sort-merge file

A work file for sort processing must be defined. The ASSIGN
clause is assumed as a comment; up to 8 alphanumeric
characters must be specified in it.

• Input file

Define the same way as for ordinary file processing, if
required.

• Output file

Define the same way as for ordinary file processing, if
required.

When performing merge processing within the same program,
define only one sort-merge file.

DATA DIVISION

Define the records of files defined in the ENVIRONMENT
DIVISION.

PROCEDURE DIVISION

The SORT statement is used for sort processing. The contents of
the SORT statement differ depending on what is used for input-
output:

• For file input, "USING input-file-name" must be specified.

• For record input, "INPUT PROCEDURE input-procedure-
name" must be specified.

Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function) 413

• For file output, "GIVING output-file-name" must be specified.

• For record output, "OUTPUT PROCEDURE output-
procedure-name" must be specified.

The input procedure specified in INPUT PROCEDURE can pass
records to be sorted one-by-one with the RELEASE statement.

The output procedure specified in OUTPUT PROCEDURE can
receive sorted records one-by-one with the RETURN statement.

Multiple sort keys can be specified.

When all records are sorted, the sort result is set in special
register SORT-STATUS. Special register SORT-STATUS need not
be defined in the COBOL program since it is automatically
generated.

By checking the SORT-STATUS value after the SORT statement is
executed, COBOL program execution can continue even if sort
processing terminates abnormally. Setting 16 in SORT-STATUS
in the input or output procedure specified by the SORT
statement terminates sort processing.

The following table lists the valid values for special register
SORT-STATUS and their meanings.

Table 46. SORT-STATUS values and their meanings

Value Meaning
0 Normal termination
16 Abnormal termination

Any input and output files used must be closed during SORT
statement execution.

Program Compilation and Linkage

Compiler option EQUALS must be specified as required.

414 Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function)

When more than one record has the same sort key value in sort
processing, EQUALS guarantees that the records are written in
the same order as they are read.

Note: Using this compiler option degrades performance.

Program Execution

Execute the program that uses sort as follows:

1. Set environment variable BSORT_TMPDIR.

A work file called the sort-merge file is required for sort
processing. The sort-merge file is temporarily created in the
directory specified in environment variable BSORT_TMPDIR.

When the directory is not specified in the environment variable,
it is temporarily created in the directory specified in environment
variable TEMP. These environment variables must be set in
advance.

2. Assign input and output files

When input and output files are defined using file-identifiers,
use these identifiers as environment variables to set the names of
input and output files.

3. Execute the program

Note: When PowerBSORT is installed, PowerBSORT will be used
although the sort/merge process is handled by the COBOL85
run-time system.

Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function) 415

Using Merge

This section explains the types of merge processing and how to
write, compile, link, and execute a program that uses merge
processing.

416 Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function)

Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function) 417

Types of Merge Processing

The following two types of merge processing are possible:

1. Write all records in multiple files already sorted in ascending
or descending order to the output file in ascending or
descending order: (Input) file (Output) file

2. Processing all records in multiple files already sorted in
ascending or descending order as output data in ascending or
descending order: (Input) file (Output) records

When merged records are written to the output file without
changing the record contents, merge processing type 1 is
normally used. When an output file is not used or record
contents are changed, merge processing type 2 is used.

Program Specifications

This section explains the contents of a program that uses merge
for each COBOL division.

ENVIRONMENT DIVISION

The following files must be defined:

• Sort-merge file

A work file for merge processing must be defined. The
ASSIGN clause is assumed as a comment; up to 8
alphanumeric characters must be specified in it.

• Input file

All files to be merged must be defined.

418 Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function)

• Output file

Define the same way as for ordinary file processing, if
required.

When sort is performed within the same program, only one sort-
merge file must be defined.

DATA DIVISION

Define the records of files defined in the ENVIRONMENT
DIVISION.

PROCEDURE DIVISION

The MERGE statement is used for merge processing. The
contents of the MERGE statement differ depending on whether
file or record output is to be used for merge processing:

• For file output, "GIVING output-file-name" must be specified.

• For record output, "OUTPUT PROCEDURE output-
procedure-name" must be specified.

The output procedure specified in OUTPUT PROCEDURE can
receive merged records one-by-one by using the RETURN
statement.

Multiple merge keys can be specified.

When all records are merged, the merge result is set in special
register SORT-STATUS.

Unlike general data, special register SORT-STATUS need not be
defined in the COBOL program since it is automatically
generated. By checking the SORT-STATUS value after MERGE
statement execution, COBOL program execution can continue
even if merge processing terminates abnormally.

Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function) 419

Setting 16 in SORT-STATUS in the output procedure specified by
the MERGE statement terminates merge processing. The
following table lists the possible values for special register SORT-
STATUS and their meanings.

Table 47. SORT-STATUS values and their meanings

Value Meaning
0 Normal termination
16 Abnormal termination

Any input and output files used must be closed during MERGE
statement execution.

Program Compilation and Linkage

No specific compiler or linkage options are required.

Program Execution

1. Set environment variable BSORT_TMPDIR.

A work file called the sort-merge file is required for merge
processing. The sort-merge file is temporarily created in the
directory specified in environment variable BSORT_TMPDIR.

When the directory is not specified in the environment variable,
it is temporarily created in the directory specified in environment
variable TEMP. These environment variables must be set in
advance.

2. Assign input and output files.

When input and output files are defined using file-identifiers,
use these identifiers as environment variables to set the names of
input and output files.

3. Execute the program.

420 Chapter 12. Using SORT/MERGE Statements (Sort-Merge Function)

Chapter 13. System Program
Description (SD) Functions

This chapter describes the system program description (SD)
functions used to code a system program. Included in this
chapter are explanations of how to use pointers, the ADDR and
LENG functions, and the PERFORM statement without an “at
end” condition.

422 Chapter 13. System Program Description (SD) Functions

Types of System Program Description
Functions

COBOL85 has the following functions that are not included in
the COBOL standards. These functions are called the system
program description (SD) functions in COBOL85. The following
SD functions are useful for the description of a system program:

• Pointer

• ADDR function and LENG function

• PERFORM statement without an “at end” condition

The following section outlines and explains the features of each
function.

Pointer

An area with a specific address can be referenced and updated
using a pointer.

For example, when a parameter identifying an area address is
used to call a COBOL program from a program written in
another language, the area contents at that address can be
referenced or updated with a pointer in the COBOL program.

ADDR Function and LENG Function

The ADDR function can obtain the address of a data item defined
by COBOL.

The LENG function can obtain the lengths of a data item and
literal defined by COBOL in bytes.

Chapter 13. System Program Description (SD) Functions 423

For example, an area address or length can be passed as a
parameter to call a program written in another language from a
COBOL program.

PERFORM Statement without an “at end” Condition

In COBOL85, the PERFORM statement can be written without
setting an “at end” condition. For example, repeat processing can
be terminated by determining the processing result during repeat
processing.

Using Pointers

This section explains how to use pointers.

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

DATA DIVISION.
BASED-STORAGE SECTION.
01 data-name-1 [BASED ON pointer-1].
77 data-name-2 ... [BASED ON pointer-2].
WORKING-STORAGE SECTION.
01 pointer-1 POINTER.
LINKAGE SECTION.
01 pointer-2 POINTER.

PROCEDURE DIVISION USING pointer-2.
MOVE [pointer-1 =>] data-name-1
IF [pointer-2 =>] data-name-2

END PROGRAM program-name.

Outline

A pointer is used to reference an area having a specific address.
The following data items are required to use a pointer:

• Data item defined in BASED-STORAGE section (1)

• Data item whose attribute is pointer data item (2)

424 Chapter 13. System Program Description (SD) Functions

The pointer is normally used with the pointer qualifier (=>). (1)
is pointed to by (2). This is called pointer qualification, as shown
in the following example:

(2) => (1)

In this case, the contents of (1) are those of the area whose
address is set in (2).

Program Specifications

This section explains the contents of a program that uses pointers
for each COBOL division.

ENVIRONMENT DIVISION

No specifications are required.

DATA DIVISION

The data-names where addresses are specified for reference or
update must be defined in the BASED-STORAGE section. The
data-names for storing addresses (with the attribute of pointer
data item (POINTER)) must also be defined in the FILE section,
WORKING-STORAGE section, BASED-STORAGE section, and
LINKAGE section.

Defining Data-Names in BASED-STORAGE Section

A data-name can be defined in the BASED-STORAGE section by
using a data description entry the same way as defining ordinary
data.

An actual area is not secured for a data-name defined in the
BASED-STORAGE section during program execution. Thus,

Chapter 13. System Program Description (SD) Functions 425

when referencing a data item defined in BASED-STORAGE,
specify the address of the area to reference.

When the BASED ON clause is specified in a data description
entry, the data-name can be used without pointer qualification
since a pointer is implicitly given by the data-name specified in
the BASED ON clause. When using a data-name where the
BASED ON clause is not specified, pointer qualification is
required.

PROCEDURE DIVISION

A data-name with a pointer given can be specified in such
statements as the MOVE and IF statements just like an ordinary
data-name.

Program Compilation and Linkage

No specific compiler and linkage options are required.

Program Execution

No specific environment settings are required.

426 Chapter 13. System Program Description (SD) Functions

Using the ADDR and LENG Functions

This section explains how to use the ADDR and LENG functions.

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 data-name-1
01 pointer-1 POINTER.
01 data-name-2.
02 ... [OCCURS ... DEPENDING ON ...].
01 data-name-3 PIC 9(4) BINARY.

PROCEDURE DIVISION.
MOVE FUNCTION ADDR(data-name-1) TO pointer-1.
MOVE FUNCTION LENG(data-name-2) TO data-name-3.

END PROGRAM program-name.

Outline

The ADDR function returns the address of a data item as a
function value. The LENG function returns the size of a data item
or literal in bytes.

Program Specifications

This section explains the contents for each COBOL division of a
program that uses the ADDR and LENG functions.

ENVIRONMENT DIVISION

No specifications are required.

Chapter 13. System Program Description (SD) Functions 427

DATA DIVISION

The data-names for storing functions values returned by the
ADDR and LENG functions must be defined.

The attribute of a function value of the ADDR function is a
pointer data item.

The attribute of a function value of the LENG function is a
numeric data item.

PROCEDURE DIVISION

The ADDR and LENG functions can be specified in such
statements as the MOVE and IF statements, the same as with
ordinary data-names.

Program Compilation and Linkage

No specific compiler and linkage options are required.

Program Execution

No specific environment settings are required.

428 Chapter 13. System Program Description (SD) Functions

Using the PERFORM Statement without an
“at end” Condition

This section explains how to use the PERFORM statement
without an “at end” condition.

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

PROCEDURE DIVISION.
PERFORM WITH NO LIMIT
IF ...
EXIT PERFORM
END-IF
:
END-PERFORM.

END PROGRAM program-name.

Outline

When using a conventional PERFORM statement to determine
the “at end” condition during repeat processing, complex
program specifications are required. Using the PERFORM
statement without an “at end” condition simplifies program
specifications.

Program Specifications

This section explains the contents of each division of a COBOL
program that uses the PERFORM statement without an “at end”
condition.

ENVIRONMENT DIVISION

No specifications are required.

Chapter 13. System Program Description (SD) Functions 429

DATA DIVISION

No specifications are required.

PROCEDURE DIVISION

WITH NO LIMIT must be specified for the PERFORM statement
to eliminate an “at end” condition.

For repeat processing executed by the PERFORM statement, a
statement determining the “at end” condition and a statement to
exit repeat processing must be specified.

If a statement for exiting repeat processing is not specified,
processing continues infinitely (in an infinite loop).

Program Compilation and Linkage

No specific compiler and linkage options are required.

Program Execution

No specific environment settings are required.

430 Chapter 13. System Program Description (SD) Functions

Chapter 14. Communication
Functions

This chapter explains the presentation file module (asynchronous
message communication/synchronous communication
programs) and simplified inter-application communication
functions provided for message communication from COBOL
programs.

432 Chapter 14. Communication Functions

Communication Types

This section explains the features and usage of the three
functions provided for message communication from COBOL
programs:

• Presentation file module (asynchronous message
communication)

• Presentation file module (synchronous communication
programs)

• Simplified inter-application communication function.

Table 48. Differences between the presentation file module and simplified inter-
application communication function

Feature Presentation File Simplified Inter-
application

Communication
function

Asynchronous
message
communication

Synchronous
communication
programs

Asynchronous
message
communication

Communication
mode

[Client]
Windows 3.1
Windows NT
[Server] (*A)
Windows NT
DS90
K series

[Cooperate]
Windows 95
Windows NT
DS90
HP (*B)
S family
GS-series
SURE system (*B)

[Client]
Windows 95
Windows 3.1
Windows NT
DS90
HP
[Server] (*A)
Windows 95
Windows NT
DS90
HP

Chapter 14. Communication Functions 433

Table 48. Differences between the presentation file module and simplified inter-
application communication function (cont.)

Feature Presentation File Simplified Inter-
application

Program definition - Presentation file description
- Communication record description
- OPEN statement
- READ statement
- WRITE statement
- CLOSE statement

- Communication
record description
- Call function of
simple application
communication
apparatus ability by
CALL statement

Required
product(s)

RDB/7000 Server for
Windows NT
BS*NET (*C)

IDCM None

Use Use for message
communication

When decentralized
development
between mutual
systems by
communication of
real time is done

At message
communication with
COBOL unit

(*A) The application can be started in the server system.
(*B) Cannot cooperate with the COBOL application.
(*C) Cannot cooperate with a Windows client.

434 Chapter 14. Communication Functions

Using Presentation File Module
(Asynchronous Message Communication)

This section explains how to use the presentation file module for
asynchronous message communication, and describes the
operating environment and creation of COBOL source programs.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. program-name.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT file-name
 ASSIGN TO GS-file-identifier
 SYMBOLIC DESTINATION IS "ACM"
 DESTINATION-1 IS logical-destination-name-notification-area
 [PROCESSING MODE IS processing-type-notification-area]
 [PROCESSING TIME IS monitoring-time-notification-area]
 [MESSAGE CLASS IS priority-notification-area]
 [FILE STATUS IS input-output-status-1 input-output-status-2].
 DATA DIVISION.
 FILE SECTION.
 FD file-name
 [RECORD IS VARYING IN SIZE DEPENDING ON record-size].
 01 communication-record-name
 WORKING-STORAGE SECTION.
 01 logical-destination-name-notification-area PIC X(8).
 [01 processing-type-notification-area PIC X(2).]
 [01 monitoring-time-notification-area PIC 9(4).]
 [01 priority-notification-area PIC 9.]
 [01 input-output-status-1 PIC X(2).]
 [01 input-output-status-2 PIC X(4).]
 [01 record-size PIC 9(5).]
 PROCEDURE DIVISION.
 OPEN I-O file-name.
 MOVE logical-destination-name
 TO logical-destination-name-notification-area.
 [MOVE processing-type TO processing-type-notification-area.]
 [MOVE monitoring-time TO monitoring-time-notification-area.]
 [MOVE priority TO priority-notification-area.]
 WRITE communication-record-name.
 READ file-name.
 CLOSE file-name.
 END PROGRAM program-name.

Chapter 14. Communication Functions 435

Outline

The presentation file module performs asynchronous message
communication using connected product communication
functions.

The following figure outlines data transfer through the
presentation file module.

Figure 112. Outline of data transfer using the presentation file module
(asynchronous message communication)

Operating Environment

To use the presentation file module, use connected products to
enable communication functions.

This section gives an example using RDB/7000 servers for
Windows NT. The following figure is a diagram of the operating
environment using the presentation file module with the servers.

436 Chapter 14. Communication Functions

With Server (Windows NT)

With Client-Server (Windows NT - Windows NT)

Figure 113. Operating environment for using the presentation file module
(asynchronous message communication)

Program Specifications

This section explains the contents of a program using the
presentation file module (asynchronous message
communication).

ENVIRONMENT DIVISION

Define a presentation file in the same manner as you define a
general file. Write a file control entry in the file control paragraph

Chapter 14. Communication Functions 437

of the input-output section. The following table lists the
information to be specified in the file control entry.

Table 49. Information to be specified in the file control entry

Location Information Type Details and Use of Specification
Required SELECT clause File name Specify the file name used in the

COBOL program. The file name
must comply with the COBOL
user-defined words rules.

ASSIGN clause File-reference-identifier Specify in the "GS-file-identifier"
format. This file identifier is used
as run-time environment
information for specifying the
connected product name at run-
time.

SYMBOLIC-
DESTINATION
clause

Destination type Specify "ACM".

DESTINATION
clause

Data-name Specify a data-name defined as an
8-byte alphanumeric data item in
the WORKING-STORAGE section
or LINKAGE section. The logical
destination name of input-output
processing must be specified for
this data-name when
communication starts.

Optional FILE STATUS
clause

Data-name Specify a data-name defined as a
2-byte alphanumeric data item in
the WORKING-STORAGE section
or LINKAGE section. The
execution results of input-output
processing must be specified for
this data-name. See Appendix B,
“I-O Status List” for the value to
be specified. Specify a 4-byte
alphanumeric data item for
detailed information.

438 Chapter 14. Communication Functions

Table 49. Information to be specified in the file control entry (cont.)

Location Information Type Details and Use of Specification
Optional MESSAGE

CLASS clause
Data-name Specify a data-name defined as a

1-byte numeric item in the
WORKING-STORAGE section or
LINKAGE section. Input-output
processing priority (1-9) must be
specified for this name when
communication starts. A value of
1 specifies the highest priority. If
the default or 0 is specified, the
system assumes the lowest level of
specified logical destination.

PROCESSING
MODE clause

Data-name Specify a data-name defined as a
2-byte alphanumeric data item in
the WORKING-STORAGE section
or LINKAGE section. The type of
input-output processing must be
specified for this data-name when
communication starts. See Table
50.

PROCESSING
TIME clause

Data-name Specify a data-name defined as a
4-byte numeric item in the
WORKING-STORAGE section or
LINKAGE section. Input-output
processing monitoring time must
be specified in seconds for this
data-name when communication
starts. If the default or 0 is
specified, the system assumes
infinite wait time.

Chapter 14. Communication Functions 439

Table 50. Processing types and values to be specified

Processing Mode Control Information

Input Queuing not
specified

"NW" If there is no data at the logical destination, the
system posts "0A" as the input-output status.

Queuing
specified

"WT"
Blank

If there is not data at the logical destination, the
system follows the monitoring time
specification and waits until data is written.

Output Queuing not
specified

"NW" If the maximum amount of data is written to
the logical destination, the system cancels write
processing and posts "9G" as the input-output
status.

Queuing
specified

"WT"
Blank

If the maximum amount of data is written to
the logical destination, the system follows the
monitoring time specification and waits until
data has been read.

Forced
execution
specified

"NE" If the maximum amount of data has been
written to the logical destination, the system
writes data exceeding the maximum amount
and posts "0B" as the input-output status.

DATA DIVISION

Write the record definition to be used for communication and the
data definition specified in the file control entry.

PROCEDURE DIVISION

Use input-output statements for communication processing in
the same manner as for general file processing:

• OPEN statement : Starts message send-receive processing.

• READ and WRITE statements: Send and receive messages.

• CLOSE statement: Quits message send-receive processing.

440 Chapter 14. Communication Functions

OPEN and CLOSE Statements

Execute an OPEN statement to start message send-receive
processing. Execute a CLOSE statement to quit message send-
receive processing.

READ and WRITE Statements

To send a message, use the WRITE statement where the
communication record is specified. To receive a message, use the
READ statement where the presentation file is specified.

Before executing the READ or WRITE statement, specify the
logical destination name for the data name specified in the
DESTINATION-1 clause. Messages are sent to and received from
the destination of the specified logical destination name.

Program Compilation and Linkage

No specific compiler or linkage options are required.

Program Execution

This section shows the environment setup for executing a
program that sends and receives messages by using the
presentation file module.

Specify the name of the connected product to use with the file
identifier as the environment variable name.

For example, to specify the ASSIGN clause of the COBOL
program:

ASSIGN TO GS-ACMFILE

Chapter 14. Communication Functions 441

The initial file contents are:

 [program-name]
 :
 ACMFILE=,ACM
 :

Specify "ACM" (connected product name) for the file identifier
specified in the ASSIGN clause of the COBOL file.

Specify a comma (,) before "ACM".

If the connected product is not specified for the file identifier, the
connected product specified in the environment variable
@CBR_PSFILE_ACM is used.

@CBR_PSFILE_ACM=ACM

For details, refer to “Environment Variables” in Chapter 5.

To use ACM communication from a COBOL program using the
presentation file module, set up the ACM environment before
executing the COBOL program.

Using ACM Communication

ACM communication is used through the presentation file
module. ACM communication can also be used from COBOL
programs by using the CALL statement to call an ACM-
supported COBOL subroutine.

442 Chapter 14. Communication Functions

Using Presentation File Module
(Synchronous Communication Programs)

This section explains how to use the presentation file module for
synchronous communication programs, describes the operating
environment and the creation of COBOL source programs, and
provides instructions on how to communicate between
programs.

IDENTIFICATION DIVISION.
 PROGRAM-ID. program-name.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT file-name
 ASSIGN TO GS-file-identifier
 SYMBOLIC DESTINATION IS "APL"
 [SESSION CONTROL IS conversation-information-notification-region
 [MESSAGE MODE IS message-kind-notification-region
 [DESTINATION-1 IS logical-destination-1
 [DESTINATION-2 IS logical-destination-2
 [MESSAGE OWNER IS transmission-right-information-notification-region]
 [MESSAGE CODE IS reason-code-notification-region
 [PROCESSING CONTROL IS extended-message-control-information-region]
 [FILE STATUS IS input-output-status-1 input-output-status-2].
 DATA DIVISION.
 FILE SECTION.
 FD file-name
 [RECORD IS VARYING IN SIZE DEPENDING ON record-size].
WORKING-STORAGE SECTION.
 [01 conversation-information-notification-region PIC X.]
 [01 message-kind-notification-region PIC X.]
 [01 logical-destination-notification-region-1 PIC X(8).]
 [01 logical-destination-notification-region-2 PIC X(8).]
 [01 transmission-right-information-notification-region PIC ~.]
 [01 reason-code-notification-region PIC ~.]
 [01 input-output-status-1 PIC X(2).]
 [01 input-output-status-2 PIC X(4).]
 [01 size-of-record PIC 9(5).]
PROCEDURE DIVISION.
 OPEN I-O file-name.
 [MOVE conversation-information
 TO conversation-information-notification-region.
 [MOVE message-kind TO message-kind-notification-region.]
 [MOVE logical-destination-1

Chapter 14. Communication Functions 443

 TO logical-destination-notification-region-1.]
 [MOVE logical-destination-2
 TO logical-destination-notification-region-2.]
 [MOVE transmission-right-information
 TO transmission-right-information-notification-region.]
 [MOVE reason-code TO reason-code-notification-region.]
 WRITE communication-record-name.
 READ file-name.
 CLOSE file-name.
 END PROGRAM program-name.

Outline

The presentation file module performs synchronous
communication programs using the synchronous communication
programs of IDCM.

The following figure outlines data transfer through the use of
IDCM.

444 Chapter 14. Communication Functions

Figure 114. Outline of data transfer using the presentation file module (synchronous
communication programs)

Note: Refer to the “IDCM User’s Guide” for the types of
networks that can be connected.

Chapter 14. Communication Functions 445

Program Specifications

This section explains the contents of a program using the
presentation file module (synchronous communication
programs).

ENVIRONMENT DIVISION

Define a presentation file in the same manner as you define a
general file. Write a file control entry in the file control paragraph
of the input-output section.

The following table lists the information to be specified in the file
control entry.

Table 51. Information to be specified in the file control entry

Location Information Type Details and Use of Specification

Required SELECT clause File name Specify the file name used in
COBOL program. The file name
must comply with the COBOL
user-defined words rules.

ASSIGN clause File-reference- identifier Specify in the "GS-file identifier"
format. This file identifier is used
as run-time environment
information for specifying the
connected product name at run-
time.

SYMBOLIC-
DESTINATION
clause

Destination type Specify "APL".

446 Chapter 14. Communication Functions

Table 51. Information to be specified in the file control entry (cont.)

Location Information
Type

Details and Use of Specification

Optional FILE STATUS
clause

Data name Specify a data-name defined as a 2-byte
alphanumeric data item in the
WORKING-STORAGE section or
LINKAGE section. The execution results
of input-output processing must be
specified for this data-name. See
Appendix B, “I-O Status List” for the
value to be specified. Specify a 4-byte
alphanumeric data item for detailed
information.

SESSION
CONTROL
clause

Data name Specify a data-name defined as a 1-byte
numeric item in the WORKING-
STORAGE section or LINKAGE section.
Input-output processing priority (1-9)
must be specified for this name when
communication starts. A value of 1
specifies the highest priority. If the
default or 0 is specified, the system
assumes the lowest level of specified
logical destination.

MESSAGE
MODE clause

Data name Specify a data-name defined as a 1-byte
numeric item in the WORKING-
STORAGE section or LINKAGE section.
Input-output processing priority (1-9)
must be specified for this name when
communication starts. A value of 1
specifies the highest priority. If the
default or 0 is specified, the system
assumes the lowest level of specified
logical destination.

Chapter 14. Communication Functions 447

Table 51. Information to be specified in the file control entry (cont.)

Optional DESTINATION
-1 clause

Data-name Specify a data-name defined as an 8-byte
alphanumeric data item in the
WORKING-STORAGE section or
LINKAGE section. The logical
destination name of input-output
processing must be specified for this
data-name when communication starts.

DESTINATION
-2 clause

Data-name Specify a data-name defined as an 8-byte
alphanumeric data item in the
WORKING-STORAGE section or
LINKAGE section. The logical
destination name of input-output
processing must be specified for this
data-name when communication starts.

MESSAGE
OWNER clause

Data-name Specify a data-name defined as a 1-byte
numeric item in the WORKING-
STORAGE section or LINKAGE section.
Input-output processing priority (1-9)
must be specified for this name when
communication starts. A value of 1
specifies the highest priority. If the
default or 0 is specified, the system
assumes the lowest level of specified
logical destination.

MESSAGE
CODE clause

Data-name Specify a data-name defined as a 1-32767
digit alphanumeric character in the
WORKING-STORAGE section or
LINKAGE section. This sets the reason
codes that will be given in the event of
force-ended communication.

PROCESSING
CONTROL
clause

Data-name Specify a data-name defined as an
alphanumeric character of the digit
provided by IDCM in the WORKING-
STORAGE section or LINKAGE section.

448 Chapter 14. Communication Functions

Note: Refer to the online help in the IDCM software
development kit for more details on the settings for the optional
clauses.

DATA DIVISION

Write the record definition to be used for communication and the
data definition specified in the file control entry.

PROCEDURE DIVISION

Use input-output statements for communication processing in
the same manner as for general file processing:

• OPEN statement : Starts message send-receive processing.

• READ and WRITE statements: Send and receive messages.

• CLOSE statement: Quits message send-receive processing.

OPEN and CLOSE Statements

Execute an OPEN statement to start message send-receive
processing. Execute a CLOSE statement to quit message send-
receive processing.

READ and WRITE Statements

To send a message, use the WRITE statement where the
communication record is specified. To receive a message, use the
READ statement where the presentation file is specified.

Before executing the READ or WRITE statement, specify the
logical destination name for the data name specified in the
DESTINATION-1 clause. Messages are sent to and received from
the destination of the specified logical destination name.

Chapter 14. Communication Functions 449

Program Compilation and Linkage

No specific compiler or linkage options are required.

Program Execution

The communication environment of IDCM should be
straightened from the execution of the COBOL program when
the program which communicates between programs which use
the display file function is executed. Refer to the “IDCM User’s
Guide” and the online help in the IDCM software development
kit for additional details.

Using Simplified Inter-application
Communication

This section explains how to use simplified inter-application
communication. For more information about how to use
simplified inter-application communication, refer to the sample
programs in the “Getting Started with Fujitsu COBOL” guide.

Outline

Simplified inter-application communication is used to transfer
messages between programs.

Messages are transferred between programs through the logical
destination of a communication system process (called a server)
that controls messages.

It generates logical destinations for storing messages in the
server.

450 Chapter 14. Communication Functions

A user send-receive program is called a client. Before starting the
client, connect a client logical destination (local logical
destination) to a server logical destination (remote logical
destination).

Consequently, if read-write processing is specified for the client
logical destination, data is read from or written to the connected
server logical destination.

A server can be operated under Windows 95 and Windows NT,
and a client can be operated under Windows 95, Windows 3.1
and Windows NT.

The following figure outlines simplified inter-application
communication.

Figure 115. Outline of simplified inter-application communication

Operating Procedures

This section explains procedures for server and client operations
used to execute simplified inter-application communication.

Chapter 14. Communication Functions 451

The summary of procedures for server operation is:

1. Set up the operating environment

2. Start the server (*)

3. Generate logical destinations (*)

4. Change the logical destination mode (*)

5. Collect logs (messages are received or sent by clients), display
logical destination information

6. Quit the server

(*) These steps can be performed automatically by using the definition file.

452 Chapter 14. Communication Functions

The details of the above steps are given below:

1. Simplified inter-application communication enables
communication using the TCP/IP protocol with the Windows
socket API. To use simplified inter-application communication,
set up an environment where the Windows socket API and
TCP/IP protocol can be used.

• host file setup

The host name and IP address of the machine where the
server operates must be defined in the host files of the
machines where clients operate.

• services file setup

A service name and port number must be defined in the
services files of the machines where the server and clients
operate.

Any number can be defined as a port number unless the
number is defined in another entry. A port number must be
consistent in local area networks (LANs) that use the
simplified inter-application communication function. For
example:

Service name: cobci

Port number/protocol: 20000/tcp

Using Windows 95:

After the TCP/IP protocol is installed, the hosts file and the
services file must be created using an editor. These files are
stored in the directory where Windows 95 is installed. Note:
the sample files (hosts.sam, services.sam) are also stored in
this directory.

Chapter 14. Communication Functions 453

Using Windows NT:

If the TCP/IP protocol is installed, the hosts files and services
files are created in directory system32/drivers/etc under the
directory where Windows NT is installed.

2. to 4. Execute COBCISRV.EXE to start the server.

For screen operation and setup, see “Communication System
Environment Setup Dialog Box” and “Simplified Inter-
application Communication Server Window.”

The logical destinations have no permission for reading or
writing messages immediately after they are generated. Change
the logical destination mode to give read/write permission to
these destinations. The clients can then be started.

Only one server can be started on a machine.

Note: Steps 2 to 4 can be omitted by using a definition file. See
“Starting by Using the Server Definition” for more details.

5. Logs can be collected, and logical destination information can
be displayed during client execution. For screen operation and
setup, see “Simplified Inter-application Communication Server
Window.”

6. to 9. Switch the logical destination mode back to the original
mode. The logical destinations no longer have permission for
reading and writing messages. Delete the messages and logical
destinations, then quit the server.

The procedure for client operation:

1. Set up the operating environment

Define the information in the hosts files and services files. See
step 1 of the procedure for server operation.

2. Create a logical destination definition file

454 Chapter 14. Communication Functions

Start the logical destination definition file creation utility
((16): COBCIU16.EXE, (32): COBCIU32.EXE) to create a
logical destination definition file. For the screen operation
and setup, see “Logical Destination Definition File Creation
Utility.”

3. Start the program

A client requires information regarding the logical
destination definition file at run time. Therefore, specify
@CBR_CIINF=definition-file-name in the initial file for
COBOL execution or in the Run-time Environment Setup
window. Windows 95 and Windows NT are designed so that
the definition file name can be directly specified in the
environment variable.

The definition file name can be specified with the relative path
from the directory containing the executable client file.

Server Operation Windows

This section explains procedures for operating server windows:

• Communication System Environment Setup dialog box

• Simplified Inter-application Communication Server window

See “Log Collection” for the server error display format and
response to server errors.

Communication System Environment Setup Dialog Box

Start the server, specify the maximum number of system
messages and maximum waiting instructions in the
Communication System Environment Setup dialog box, then
click on the OK button.

Chapter 14. Communication Functions 455

Figure 116. The Communication System Environment Setup dialog box

The server can be used. The Simplified Inter-application
Communication Server window is displayed.

• System max messages (0 to 999999999)

Specify the maximum number of messages that can be stored
in the server.

If the default or 0 is specified, the system uses the maximum
value. For the value to be specified, see “Estimating
Memory.”

• Max waiting instructions (0 to 999999999)

Specify the maximum number of read and write instructions
from clients that can be queued in the server.

If the default or 0 is specified, the system uses the maximum
value. For the value to be specified, see “Estimating
Memory.”

456 Chapter 14. Communication Functions

Simplified Inter-application Communication Server Window

The following can be done in the Simplified Inter-application
Communication Server window:

• Logical destination operation (create, delete, change mode,
delete message, quit server)

• Display information

• Logging

Figure 117. Simplified inter-application communication server window

Creating a Logical Destination

To create a logical destination, select Create logical destination
from the Logical destination operation menu, specify the logical
destination name, the maximum number of messages, and
priority in the Create Logical Destination dialog box, then click
on the OK button.

Figure 118. The Create Logical Destination dialog box

Chapter 14. Communication Functions 457

A logical destination is generated.

The Create Logical Destination dialog box contains the following
elements:

Logical destination edit box

Specify the name of the logical destination to be generated in
the server.

The logical destination name can be up to eight alphanumeric
characters. The logical destination name for an opponent
logical destination is specified in the Client Definition dialog
box.

Max messages (0 to 999999999)

Specify the maximum number of messages that can be stored
at the logical destination to be generated.

If the default or 0 is specified, the system uses the value
specified for "System max messages" in the Communication
System Environment Setup dialog box.

Priority (3 to 9)

Specify the number of priority levels in which messages can
be stored at the logical destination to be generated.

If the default or a value from 0 to 2 is specified, the system
assumes 9.

Deleting a Logical Destination

To delete a logical destination, select Delete logical destination
from the Logical destination operation menu, select the logical
destination to be deleted in the Delete Logical Destination dialog
box, then click on the OK button.

The following are the requirements for deleting a logical
destination:

• The logical destination contains no messages

458 Chapter 14. Communication Functions

• Inactive is specified for the read and write attributes

If Purge Message button is clicked, the message stored in the
selected logical destination can be deleted.

Other logical destinations can be deleted continuously by
pressing the Delete button.

Figure 119. The Delete Logical Destination dialog box

The Delete Logical Destination dialog box contains the following
elements:

LD name

Displays the logical destination name.

Current

Displays the number of the messages stored in a logical
destination.

Waitings

Displays the number of the instructions waiting in a logical
destination.

OK button

Chapter 14. Communication Functions 459

Click to delete selected logical destinations and close the
Delete Logical Destination dialog box.

Cancel button

Click to cancel any deletions selected and return to the state
before the Delete Logical Destination dialog box was opened.

Delete button

Click to continuously delete other logical destinations.

Purge Message button

Click to delete the messages stored in the selected logical
destination.

Help button

Click to access the online help.

Changing a Logical Destination Mode

To change the mode of a logical destination, select Change mode
from the Logical Destination Operation menu, then change the
read and write attributes of the logical destination in the Change
Mode of Logical Destination dialog box.

Select a logical destination name from the list box, select either
"Active" or "Inactive" for the read and write attributes, then click
on the OK button.

The logical destination attributes are changed.

You can change the mode of another logical destinations by
clicking the Change button.

460 Chapter 14. Communication Functions

Figure 120. The Change Mode of Logical Destination dialog box

The Change Mode of Logical Destination dialog box contains the
following elements:

LD name

Displays the logical destination name.

Read (status line)

Displays the active (Act) or inactive (-) read status of a logical
destination.

Write (status line)

Displays the active (Act) or inactive (-) write status of a
logical destination.

Chapter 14. Communication Functions 461

Read (radio buttons)

To read messages from the logical destination, select the
"Active" radio button. If "Inactive" is clicked, messages cannot
be read from the logical destination.

Write (radio buttons)

To write messages to the logical destination, select the
"Active" radio button. If "Inactive" is clicked, messages cannot
be written to the logical destination.

Displaying Information

To display information, select Display information from the
Logical Destination operation menu. The Logical Destination
Information dialog box is displayed.

To update information, click on the Update button.

Figure 121. The Logical Destination Information dialog box

462 Chapter 14. Communication Functions

The Logical Destination Information dialog box contains the
following elements:

Communication system set information

 - Max messages

 Displays the maximum number of messages that can be
stored in the server.

 - Max waiting instruction

Displays the maximum number of read and write
instructions that can be queued in the server.

LD name

Displays the names of generated logical destinations.

Read

Displays the read attribute of each logical destination. "Act"
indicates that read is enabled; "-" indicates that read is
disabled.

Write

Displays the write attribute of each logical destination. "Act"
indicates that write is enabled; "-" indicates that write is
disabled.

Priority

Displays the number of priority levels where messages can be
stored at each logical destination.

Max messages

Displays the maximum number of messages that can be
stored at each logical destination.

Chapter 14. Communication Functions 463

Current

Displays the current number of messages that are stored at
each logical destination.

Waiting

Displays the number of read and write instructions that are
queued at each logical destination.

Log Collection

To collect logs, select Operate from the Logging menu. The
Logging Operation dialog box is displayed.

Figure 122. The Logging Operation dialog box

Acquire the log according to the following procedure:

1. Specify the name of the file for log collection.

2. Select either "Get error log" or "Get trace log".

3. Click on the Start logging button.

Log collection starts.

To quit log collection, click on the End logging button.

464 Chapter 14. Communication Functions

The name of the file for log collection can be specified with an
absolute or relative path. The path from the current server
directory serves as the relative path.

If the specified file does not exist, a new file is created. If the
specified file exists, log information is appended to the file.

Logs are classified into error information and trace information.
Select "Get error log" to collect server error information in the file.
Select "Get trace log" to write server error information, processing
requests from clients, and processing results in the file.

Error information should be collected during server operation so
that server errors can be ascertained.

Use the trace information when you debug the client because
there is much output information.

The following shows the log output format:

 < (1) > [(2)] ID: (3) Client: (4) EXE: (5) (6)

(1) Collection date and time
(year/month/day/hours:minutes:seconds)

(2) Event

Chapter 14. Communication Functions 465

Table 52. Log Collection Explanation of Events

Event Explanation
OPEN req. The client requested connection.
CLOSE req. The client requested disconnection.
READ req. The client requested read processing.
WRITE req. The client requested write processing.
OPEN res. Connection processing for the client ended.
CLOSE res. Disconnection processing for the client ended.
READ res. Read processing ended.
WRITE res. Write processing ended.
Communication error An error occurred during communication with the client.
API error A Windows function error occurs.
Internal conflict Internal conflict occurred.

(3) Client identification number

(4) Client IP address

(5) Name of the client execution module (12 bytes). Excess bytes
are truncated.

(6) Additional information

466 Chapter 14. Communication Functions

Table 53. Log Collection Additional Information

Event Additional Information
OPEN req. ----
CLOSE req. ----
READ req. Parameters of the COBCI_READ function (server-logical-

destination-name, buffer-length, processing-type, and
monitoring-time)

WRITE req. Parameters of the COBCI_WRITE function (server-logical-
destination-name, message-length, priority, processing-type,
and monitoring-time)

OPEN res. Error code (rtn: displayed in decimal) (*1)
detail code (detail: displayed in decimal) (*1)

CLOSE res. Error code (rtn: displayed in decimal) (*1)
detail code (detail: displayed in decimal) (*1)

READ res. Error code (rtn: displayed in decimal) (*1)
detail code (detail: displayed in decimal) (*1)

WRITE res. Error code (rtn: displayed in decimal) (*1)
detail code (detail: displayed in decimal) (*1)

Communication error Windows Sockets function name, error code (err: displayed
in decimal) (*1)
error content

API error Windows function name, error code (err: displayed in
decimal) (*2)
error content

Internal conflict Error content
*1 See “Error Codes.”
*2 See the Windows function error codes.

Only communication errors, API errors, and internal conflicts are
output as error information.

The information from (3) to (6) is not always output.

Chapter 14. Communication Functions 467

The following table lists the responses to errors.

Table 54. Error responses

Event Response
Communication error Take action according to the corresponding error code (See the

Windows Sockets function error codes.) If the error value is 0, a
client communication error has probably occurred. See “Error
Codes.”

API error A probable cause of the error is insufficient memory or disk
resources. Review the operating environment.

Internal conflict Contact a Fujitsu systems engineer (SE).

Quitting a Server

To quit or exit a server, select End server from the Logical
destination operation menu.

All messages stored in a logical destination will be deleted when
End server is selected and the acquisition of the log is stopped.

Starting by Using a Server Definition File

The inter-application communication server can be started by
creating a server definition file which reads information on each
logical destination.

Creating a Server Definition File

Use an editor to create a server definition file.

Note: If you change information on logical destinations (create
new logical destinations, change log file names, etc.) do not
update this file after starting the inter-application communication
server.

Specifying a Server Definition File

If the execution environment information @CBR_CI_SRVINF is
not specified when the COBCISRV.EXE is started, the

468 Chapter 14. Communication Functions

COBSVINF.INI file in the directory where COBCISRV.EXE is
stored will be used.

If the execution environment information @CBR_CI_SRVINF is
specified, it will then be used.

Use the AUTOEXEC.BAT file in Windows 95 to set the execution
environment information and use the System in the Control
Panel in Windows NT.

The full path name and the relative path name can be used for
the file name specified for execution environment information
@CBR_CI_SRVINF. When the relative path name is used, it
becomes the relative path from the current directory when the
Inter-application Communication Server window is started. If the
specified file does not exist, the Communication System
Environment Set dialog box is displayed.

Server Definition File Description

[SRVINF] section

Necessary information is specified by the Communication
System Environment Set dialog box and the Log Acquisition
Operation dialog box. The start and end methods for the inter-
application communication server window can also be specified.

Chapter 14. Communication Functions 469

1. SysMaxMsg

SysMaxMsg=n

Specify the maximum number of system storage messages
set in the Communication System Environment Set dialog
box. The default is "999999999".

2. SysMaxWait

SysMaxWait=n

Specify the number of system waiting instructions set in the
Communication System Environment Set dialog box. The
default is "999999999".

3. StartMode

StartMode= { WINDOW | ICON }

Specify how to display the screen on server startup. You can
have a window (WINDOW) or an icon (ICON) appear at
startup.

4. IconMenu

IconMenu= { SYSDEF | CLOSEONLY }

Specify the type of system menu that starts with the icon.

SYSDEF: The default system menu is displayed.

CLOSEONLY: Only "Close" is displayed in the system menu.
In this instance, you cannot change from an icon to a
window. Only when "ICON" is specified in "StartMode" can
you change from an icon to a window.

470 Chapter 14. Communication Functions

5. EndMode

EndMode= { MANUAL | AUTO }

Specify the action of the Inter-application Communication
Server window when Windows is shut down.

MANUAL: Displays a message which states that the Inter-
application Communication Server window is still running
after ending Windows. After the Inter-application
Communication Server window is ended, Windows should
be shut down again.

AUTO: The Inter-application Communication Server
window ends with Windows shutdown. No message is
displayed.

6. Log

Log= { YES | NO }

Specify whether or not to acquire the log. Specify either "YES"
or "NO".

7. LogType

LogType= { ERROR | TRACE }

Specify the log type set in the Log Acquisition Operation
dialog box.

ERROR: Specify the error log.

TRACE: Specify the trace log.

Only when "YES" is specified for "Log", will this item will
become effective.

Chapter 14. Communication Functions 471

8. LogFileName

LogFileName=XXXXXXXX.XXX

Specify the log file name set in the Log Acquisition Operation
dialog box.

The full path name and the relative path name can be used
for the log file name. When the relative path name is used, it
becomes a relative path from the current directory.

The default is "COBCISRV.LOG".

Only when "YES" is specified for "Log", will this item will
become effective.

[LDINF] section

Necessary information is specified by the Logical Destination
Creation dialog box and the Logical Destination Mode Change
dialog box.

Specify this section in the following manner:

logical destination name= number of maximum storage message,
number of maximum priority level, logical destination mode

If information regarding the number of maximum storage
messages is omitted, "," should still be specified.

1. Logical destination name

Specify the logical destination name set in the Logical
Destination Creation dialog box.

The logical destination name can be up to 8 alphanumeric
characters in length. There is no default.

472 Chapter 14. Communication Functions

2. Number of maximum storage messages

Specify the number of maximum storage messages set in the
Logical Destination Creation dialog box.

The default is the maximum number of system storage
messages (SysMaxMsg).

3. Number of maximum priority level

Specify the maximum priority level number set in the Logical
Destination Creation dialog box.

The default is "9".

4. Logical destination mode

Specify each logical destination mode set in the Logical
Destination Mode Change dialog box. When the server is
started, each logical destination will be set in the mode
according to its specification.

RDWR : Read / write is acceptable.

READ : Read is acceptable; write is not.

WRITE : Read is not acceptable; write is acceptable.

The default is "RDWR".

Note: A line in the server definition file which starts with a
semicolon (;) is interpreted as a comment.

Chapter 14. Communication Functions 473

The following is an example of a server definition file.

[SRVINF]
; Number of System maximum storage message
SysMaxMsg=100
; Number of System waiting instruction
SysMaxWait=50
; Screen display when server starts
StartMode=ICON
; System menu when starts with icon
IconMenu=
; Movement when Windows is ended
EndMode=AUTO
; Presence of log acquisition
Log=YES
; Log kind
LogType=TRACE
; Log file name
LogFileName=LOGDATA.TXT

[LDINF]
; Logical destination name= number of maximum storage
; message, number of maximum priority level, logical destination
; mode
LD1=100, 9, READ
LD2= , ,WRITE
LD3=500, ,
LD4= , ,

Client Operation Window

This section explains the procedure for operating the logical
destination definition file creation utility in a client window.

474 Chapter 14. Communication Functions

Logical Destination Definition File Creation Utility

Start the logical destination definition file creation utility ((16):
COBCIU16.EXE, (32): COBCIU32.EXE), specify the name of the
definition file to be created in the Select Definition File dialog
box, then click on the OK button.

If the specified file does not exist, a new file is created. If an
existing file is specified, information is appended to the file.

The Client Definition dialog box is displayed.

Figure 123. The Client Definition dialog box

Chapter 14. Communication Functions 475

The Client Definition dialog box contains the following elements:

Server name

Specify a logical name for the server that sends messages to
or receives messages from a client. You can specify any
server name. The server name can be up to 15 alphanumeric
characters in length.

Server machine name

Specify the host name of the machine at which the server is
operating. The server machine name can be up to 15
alphanumeric characters in length.

Client LD name

Specify the logical destination name of the client. The client
logical destination name can be up to eight alphanumeric
characters in length.

Server LD name

Specify the logical destination name of the server to be
connected to the client logical destination. The server logical
destination name can be up to eight alphanumeric characters
in length.

Specify the server name, then specify the server machine name,
client logical destination name, and server logical destination
name. If information (server machine name, client logical
destination name, or server logical destination name) is already
defined for the specified server name, the information is
displayed.

Only one server machine name can be specified for a server
name. Client logical destination names and server logical
destination names, however, can be specified for a server name.

Verify that the selected server name is correct, then register a
new server name by clicking on the Associate LD button.

476 Chapter 14. Communication Functions

If a logical destination and its opponent logical destination are
both applied to an already registered server name, use the Delete
button in the Logical Destination Information group box to select
the correct logical destination.

To delete all the information (server machine name, client logical
destination name, and server logical destination name) of the
specified server, click on the Delete button in the Setting
Contents group box.

If the specified file does not exist, a new file is created. If an
existing file is specified, information is appended to the file.

Chapter 14. Communication Functions 477

The following is an example of creating a logical destination
definition file with this utility:

[SERVERNAME_DEF_LIST]
SERVER1=SERVERNAME }
SERVER2=SERVERNAME } (1)
SERVER3=SERVERNAME }

[SERVER1] (2)
@HOSTNM=SRV1 (3)

[SERVER1.LD] (4)
MYLD1=LD1 }
MYLD2=LD2 } (5)
MYLD3=LD3 }

[SERVER2]
 :
[SERVER2.LD]
 :
[SERVER3]
 :
[SERVER3.LD]
 :

(1) server-name=SERVERNAME

(2) [server-name]

(3) @HOSTNM=server-machine

(4) [server-name.LD]

(5) client-LD-name=server-LD-name

478 Chapter 14. Communication Functions

Estimating Memory

This section explains how to estimate memory for the server
when simplified inter-application communication is used.

• Memory for messages stored at a logical destination

A message written to a logical destination is managed with
an additional control area of 160 bytes. The memory required
for a message is the message length + 160 bytes.

• Memory for queuing instructions

A queuing read instruction is managed in a control area of
160 bytes. The memory required for a queuing read
instruction is 160 bytes.

As with a message stored at a logical destination, a queuing
write instruction is managed with an additional control area of
160 bytes. The memory required for a queuing write instruction
is the message length + 160 bytes.

The maximum memory required for the server depends on the
following values specified in the system:

• System max messages (Maximum number of messages)

• Max waiting instructions (Maximum number of instructions)

Chapter 14. Communication Functions 479

Determine the maximum memory required for the server based
on the following formula:

Memory required for server = M * (160 + ML) + WR * 160 + WW *
(160 + ML)

where the following conditions are satisfied:

MM =< M
MW =< WR + WW

• M: Number of messages stored at the logical destination

• ML: Message length (bytes)

• WR: Number of queuing read instructions

• WW: Number of queuing write instructions

• MM: Maximum number of messages specified in the system
(System max messages)

• MW: Maximum number of instructions specified in the
system (Max waiting instructions)

Notes

1. If there is a forced ending of a client application:

If the power supply to the client terminal is cut off before the
client application writes back to the server, the waiting
instruction remains in the server.

If there is a forced ending of the client application by issuing
"Close", the waiting instruction corresponding to the client
application is automatically deleted in the server.

2. Messages are remaining when the Inter-application
Communication Server window ends:

When the Inter-application Communication Server window
ends, all message on the server will be deleted.

480 Chapter 14. Communication Functions

Simplified Inter-application Communication
Functions

This section explains the functions used in simplified inter-
application communication.

Clients use the COBCI_OPEN, COBCI_CLOSE, COBCI_READ,
and COBCI_WRITE simplified inter-application communication
functions with the CALL statement to transfer messages between
them.

[Calling sequence]

• COBCI_OPEN (Connection to the server)

• COBCI_READ/COBCI_WRITE (Message reading from the
server or writing to the server)

• COBCI_CLOSE (Disconnection from the server)

Chapter 14. Communication Functions 481

An example of these functions used in an application is shown
below.

IDENTIFICATION DIVISION.
 PROGRAM-ID. Program-name.
ENVIRONMENT DIVISION.
DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 STATUS-RE.
 05 ERROR PIC S9(9) COMP-5.
 05 DETAIL PIC S9(9) COMP-5.
 01 SERVERNAME-REC PIC X(15).
 01 SERVERHD-REC PIC S9(9) COMP-5.
 01 UNUSED-REC PIC S9(9) COMP-5 VALUE 0.
 01 LDNAME-REC PIC X(8).
 01 BUFFER-REC PIC X(n).
 01 RECEIVETYPE-REC.
 05 BUFFERLEN PIC S9(9) COMP-5.
 05 MSGLEN PIC S9(9) COMP-5.
 05 MSGTYPE PIC S9(9) COMP-5.
 05 WAITTIME PIC S9(9) COMP-5.
 05 UNUSED PIC X(16) VALUE LOW-VALUE.
 01 SENDTYPE-REC.
 05 MSGLEN PIC S9(9) COMP-5.
 05 PRIORITY PIC S9(9) COMP-5.
 05 MSGTYPE PIC S9(9) COMP-5.
 05 WAITTIME PIC S9(9) COMP-5.
 05 UNUSED PIC S9(9) COMP-5.
PROCEDURE DIVISION.
 :
[Connect with server]
 CALL "COBCI_OPEN" USING BY REFERENCE STATUS-REC
 BY REFERENCE SERVERNAME-REC
 BY REFERENCE SERERHD-REC
 BY VALUE UNUSED-REC.
 :
[Read message]
 CALL "COBCI_READ" USING BY REFERENCE STATUS-REC
 BY VALUE SERVERHD-REC
 BY REFERENCE LDNAME^REC
 BY REFERENCE RECEIVETYPE-REC
 BY REFERENCE BUFFER-REC
 BY VALUE UNUSED-REC.
 :
[Write message]
 CALL "COBCI_WRITE" USING BY REFERENCE STATUS-REC
 BY VALUE SERVERHD-REC
 BY REFERENCE LDNAME-REC
 BY REFERENCE SENDTYPE-REC
 BY REFERENCE BUFFER-REC
 BY VALUE UNUSED-REC.
 :
[Disconnect from server]

482 Chapter 14. Communication Functions

 CALL "COBCI_CLOSE" USING BY REFERENCE STATUS-REC
 BY VALUE SERVERHD-REC
 BY VALUE UNUSED-REC.
 :
END PROGRAM Program-name.

Figure 124. An example of simplified inter-application communication functions

COBCI_OPEN

Establishes a connection between a client and server. The server
is identified by the specified server name.

The server identifier is returned when the client and server are
connected normally.

Chapter 14. Communication Functions 483

Calling Format

 :
 DATA DIVISION.
 01 STATUS-REC.
 05 ERRORCD PIC S9(9) COMP-5.
 05 DETAIL PIC S9(9) COMP-5.
 01 SERVERNAME-REC PIC X(15).
 01 SERVERHD-REC PIC S9(9) COMP-5.
 01 UNUSED-REC PIC S9(9) COMP-5 VALUE 0.
 PROCEDURE DIVISION.
 CALL "COBCI_OPEN" WITH C LINKAGE
 USING BY REFERENCE STATUS-REC
 BY REFERENCE SERVERNAME-REC
 BY REFERENCE SERVERHD-REC
 BY VALUE UNUSED-REC.

Parameters

STATUS-REC

An error code is returned to ERRORCD; a detail code is returned
to DETAIL.

SERVERNAME-REC

The client specifies the name of the server to be connected. The
server name must be defined in the logical destination definition
file. If the server name is shorter than 15 bytes, the remaining
bytes must be padded with spaces.

SERVERHD-REC

The server identifier is returned.

484 Chapter 14. Communication Functions

UNUSED-REC

Zero must be set for this area, which is reserved for future
expansion.

Return Value

If the client is connected with the server normally, the system
returns 0 to special register PROGRAM-STATUS. Otherwise, the
system returns -1 to special register PROGRAM-STATUS.

COBCI_CLOSE

Disconnects a client from a server. The server is identified by the
server identifier returned at calling of the COBCI_OPEN
function.

Calling Format

 :
 DATA DIVISION.
 01 STATUS-REC.
 05 ERRORCD PIC S9(9) COMP-5.
 05 DETAIL PIC S9(9) COMP-5.
 01 SERVERHD-REC PIC S9(9) COMP-5.
 01 UNUSED-REC PIC S9(9) COMP-5 VALUE 0.
 PROCEDURE DIVISION.
 CALL "COBCI_CLOSE" WITH C LINKAGE
 USING BY REFERENCE STATUS-REC
 BY VALUE SERVERHD-REC
 BY VALUE UNUSED-REC.
 :

Parameters

STATUS-REC

An error code is returned to ERRORCD; a detail code is returned
to DETAIL.

Chapter 14. Communication Functions 485

SERVERHD-REC

Specify the server identifier returned at calling of the
COBCI_OPEN function.

UNUSED-REC

Zero must be set for this area, which is reserved for future
expansion.

Return Value

If the client is disconnected from the server normally, the system
returns 0 to special register PROGRAM-STATUS. Otherwise, the
system returns -1 to special register PROGRAM-STATUS.

COBCI_READ

Reads messages from the server logical destination. The message
in the highest-priority level is first read. Messages in the same
priority level are read in the order they were written.

If there is no message at the logical destination, a method of
queuing processing can be specified depending on the
processing type specification.

486 Chapter 14. Communication Functions

Calling Format

 :
 DATA DIVISION.
 01 STATUS-REC.
 05 ERRORCD PIC S9(9) COMP-5.
 05 DETAIL PIC S9(9) COMP-5.
 01 SERVERHD-REC PIC S9(9) COMP-5.
 01 LDNAME-REC PIC X(8).
 01 RECEIVETYPE-REC.
 05 BUFFERLEN PIC S9(9) COMP-5.
 05 MSGLEN PIC S9(9) COMP-5.
 05 MSGTYPE PIC S9(9) COMP-5.
 05 WAITTIME PIC S9(9) COMP-5.
 05 UNUSED PIC X(16) VALUE LOW-VALUE.
 01 BUFFER-REC PIC X(n).
 01 UNUSED-REC PIC S9(9) COMP-5 VALUE 0.
 PROCEDURE DIVISION.
 CALL "COBCI_READ" WITH C LINKAGE
 USING BY REFERENCE STATUS-REC
 BY VALUE SERVERHD-REC
 BY REFERENCE LDNAME-REC
 BY REFERENCE RECEIVETYPE-REC
 BY REFERENCE BUFFER-REC
 BY VALUE UNUSED-REC.
 :

Parameters

STATUS-REC

An error code is returned to ERRORCD; a detail code is returned
to DETAIL.

SERVERHD-REC

Specify the server identifier returned at calling of the
COBCI_OPEN function.

Chapter 14. Communication Functions 487

LDNAME-REC

Specify the name of the client logical destination from where
messages are to be read. If the logical destination name is shorter
than eight bytes, the remaining bytes must be padded with
spaces. The logical destination name is specified in the Client
Definition dialog box.

RECEIVETYPE-REC

For BUFFERLEN, specify the length of the record area for
receiving messages.

Up to 32,000 bytes can be specified for BUFFERLEN.

The length of a message read from the logical destination is
returned as MSGLEN.

Specify a processing type for MSGTYPE. The following text
explains processing types:

• Queuing not specified

Specify 0 for MSGTYPE. Consequently, if the system cannot
read a message because no message was found at the logical
destination, the system returns control immediately. The
system returns an error code indicating that there is no
message to read.

• Queuing specified

Specify 1 for MSGTYPE. Consequently, the system waits until
messages (up to the maximum number of instructions specified
in the system) have been written to the logical destination.
Monitoring time can specified for WAITTIME at the same time.
The specified monitoring time must be in the range from 0 to
999999999 (seconds). If 0 is specified, infinite wait time is
assumed. Note: Again, this depends on the maximum number of
instructions specified in the system.

488 Chapter 14. Communication Functions

If messages are not written to the logical destination within the
specified time, the system returns the error code.

UNUSED is an area reserved for future expansion. Zero must be
set for the area.

BUFFER-REC

Specify the record area for receiving messages from the logical
destination. Messages are returned here. Data exceeding the
length returned as MSGLEN are not guaranteed.

If a read message exceeds the length specified for BUFFERLEN,
the excess data is truncated.

UNUSED-REC

Zero must be set for this area, which is reserved for future
expansion.

Return Value

If a message is read normally, the system returns 0 to special
register PROGRAM-STATUS. Otherwise, the system returns -1
to special register PROGRAM-STATUS.

The WM_TIMER message is used for checking time-out of
monitoring time. There may be a difference between the elapsed
time and the specified monitoring time.

COBCI_WRITE

Writes messages to the server logical destination. Priority levels
can be specified for the messages to be written. If the logical
destination has no free space, a method of queuing processing
can be specified depending on the processing-type specification.

Chapter 14. Communication Functions 489

Calling Format

 :
 DATA DIVISION.
 01 STATUS-REC.
 05 ERRORCD PIC S9(9) COMP-5.
 05 DETAIL PIC S9(9) COMP-5.
 01 SERVERHD-REC PIC S9(9) COMP-5.
 01 LDNAME-REC PIC X(8).
 01 SENDTYPE-REC.
 05 MSGLEN PIC S9(9) COMP-5.
 05 PRIORITY PIC S9(9) COMP-5.
 05 MSGTYPE PIC S9(9) COMP-5.
 05 WAITTIME PIC S9(9) COMP-5.
 05 UNUSED PIC X(16) VALUE LOW-VALUE.
 01 BUFFER-REC PIC X(n).
 01 UNUSED-REC PIC S9(9) COMP-5 VALUE 0.
 PROCEDURE DIVISION.
 CALL "COBCI_WRITE" WITH C LINKAGE
 USING BY REFERENCE STATUS-REC
 BY VALUE SERVERHD-REC
 BY REFERENCE LDNAME-REC
 BY REFERENCE SENDTYPE-REC
 BY REFERENCE BUFFER-REC
 BY VALUE UNUSED-REC.
 :

490 Chapter 14. Communication Functions

Parameters

STATUS-REC

An error code is returned to ERRORCD; a detail code is returned
to DETAIL.

SERVERHD-REC

Specify the server identifier returned at calling of the
COBCI_OPEN function.

LDNAME-REC

Specify the name of the client logical destination where messages
are to be written. If the logical destination name is shorter than
eight bytes, the remaining bytes must be padded with spaces.

SENDTYPE-REC

For MSGLEN, specify the length of the messages to be written to
the logical destination. Up to 32,000 bytes can be specified for
MSGLEN.

For PRIORITY, specify the priority levels of the messages to be
written to the server logical destination. The message in the
highest-priority level is first read. Messages in the same priority
level are read in the order they were written.

A priority level can be specified in the range from 1 (highest) to
9. If the specified priority level does not exist at the server logical
destination, the message is stored in the priority level nearest to
the one specified. A negative value cannot be specified.

Chapter 14. Communication Functions 491

Specify a processing type for MSGTYPE. The following text
explains processing types:

• Queuing not specified

Specify 0 for MSGTYPE. Consequently, if a message cannot
be written because the logical destination has no free space,
the system immediately returns control. The system returns
an error code indicating no free space.

• Queuing specified

Specify 1 for MSGTYPE. Consequently, the system waits
until messages (up to the maximum number of instructions
specified in the system) have been written to the logical
destination. Monitoring time can be specified for WAITTIME
at the same time. The specified monitoring time must be in
the range from 0 to 999999999 (seconds). If 0 is specified,
infinite wait time is assumed. Note: Again, this depends on
the maximum number of instructions specified in the system.

If the logical destination fails to make free space within the
specified time, the system returns the error code.

• Forced execution specified

Specify 2 for MSGTYPE. Consequently, more messages than
the maximum number of messages specified for the logical
destination can be written.

In this case, the system returns an error code indicating that
more messages than the maximum number have been
written. However, messages exceeding the maximum
number of messages specified in the system (System max
messages) cannot be written.

UNUSED is an area reserved for future expansion. Zero must be
set for the area.

492 Chapter 14. Communication Functions

BUFFER-REC

Specify the record area containing the messages to be written to
the logical destination.

UNUSED-REC

Zero must be set for this area, which is reserved for future
expansion.

Return Value

If a message is written normally, the system returns 0 to special
register PROGRAM-STATUS. Otherwise, the system returns -1
to special register PROGRAM-STATUS.

The WM_TIMER message is used for checking time-out of
monitoring time. There may be a difference between the elapsed
time and the specified monitoring time.

Chapter 14. Communication Functions 493

Error Codes

This section explains the error codes of functions used with
simplified inter-application communication.

If a function quits normally, the system returns 0 to the special
register PROGRAM-STATUS. The system also returns 0 as the
error code (STATUS-REC ERROR value) and detail code
(STATUS-REC DETAIL value).

If a function quits with an error, the system returns -1 to special
register PROGRAM-STATUS. In this case, the system returns
non-zero values as the error code and detail code. For error codes
and detail codes, see Table 55.

Abbreviations of the functions in Table 55:

O: COBCI_OPEN function

C: COBCI_CLOSE function

R: COBCI_READ function

W: COBCI_WRITE function

o: Related

494 Chapter 14. Communication Functions

Table 55. Error codes of simplified inter-application communication functions

Error
Code

Detail
Code

Explanation Response O C R W

0 0 Normal termination ---- o o o o
1 257 The message was read

normally, but the message
was longer than the buffer.
The excess data was
truncated.

---- o

2 513 No message was found to
read. (Queuing not
specified)

---- o

3 769 Messages exceeding the
maximum number of
messages specified for the
logical destination were
stored. (Forced execution
specified)

---- o

4 1025 A message could not be
read because no message
was found at the logical
destination when the
specified monitoring time
elapsed (Queuing specified)

---- o

1026 A message could not be
written because the
maximum number of
messages specified for the
logical destination or the
system was reached when
monitoring time elapsed
(Queuing specified)

Delete unprocessed
messages, then re-execute.

o

Chapter 14. Communication Functions 495

Table 55. Error codes of simplified inter-application communication functions (cont.)

Error
Code

Detail
Code

Explanation Response O C R W

6 1537 A message could not be
read because the logical
destination was not in the
read-enabled state.

Specify Active for the read
attribute of the server of
the logical destination.

o

1538 A message could not be
written because the logical
destination was not in the
write-enabled state.

Specify Active for the write
attribute of the server of
the logical destination.

o

1539 An attempt was made to
read a message or write a
message to a logical
destination that had not
been generated.

Generate a logical
destination in the server.

o o

7 1793 A message could not be
written because the
maximum number of
messages specified in the
logical destination was
reached. (Queuing
specified)

Delete unprocessed
messages, then re-execute.

o

8 2049 Either a message could not
be written because the
maximum number of
messages specified in the
system was reached, or a
message could not be read
or written because the
maximum number of
instructions specified in the
system was reached.

Delete unprocessed
messages, then re-execute.

o o

10 2561 A connection request was
issued for an already
connected server.

Check whether a
connection request was
issued repeatedly for the
same server.

o

496 Chapter 14. Communication Functions

Table 55. Error codes of simplified inter-application communication functions (cont.)

Error
Code

Detail
Code

Explanation Response O C R W

11 2833 Logical destination name
error.

Check whether the
specified logical
destination name is
correct.

o o

2834 Processing type error. Check whether the
specified processing type is
correct.

o o

2835 Message or buffer length
error.

Check whether the
specified message and
buffer lengths are correct.

o o

2836 Priority level error. Check whether the
specified priority level is
correct.

o

2837 Monitoring time error. Check whether the
specified monitoring time
is correct.

o o

2838 Server name error. Check whether the
specified server name is
correct.

o

2839 Server identifier error. Check whether the server
is connected and if the
specified server identifier
is correct.

o o o

12 3105 The logical destination
definition file is not
specified correctly.

Check whether the logical
definition file is correctly
specified in @CBR_CIINF.

o

3016 The logical destination
definition file contains
incorrect specification.

Check whether the data in
the logical destination
definition file is correct
and whether the server
machine name (host name
specified in @HOSTNM) is
defined in the hosts file
correctly.

o o o

Chapter 14. Communication Functions 497

Table 55. Error codes of simplified inter-application communication functions (cont.)

Error
Code

Detail
Code

Explanation Response O C R W

13 XXXX An error occurred during
communication between
systems (Detail code XXXX:
Windows Sockets function
error code. See Table 56).

If this error occurs, the
client is disconnected from
the server. To resume
communication, restart
operation from connection
(COBCI_OPEN) with the
server.

o o o o

14 3633 Memory became
insufficient.

Review the operating
environment.

o o o o

15 3841 The COBOL environment is
not established (16).

Check whether simplified
inter-application
communication is used via
a COBOL program.

o

3842 The client was disconnected
from the server.

To resume
communication, restart
operation from connection
(COBCI_OPEN) with the
server.

o o o o

3843 The socket in use is not
supported in Windows
Sockets V1.1.

Use a socket supported in
Windows Socket V1.1.

o

3844 The client was forcibly
ended.

---- o o o o

4080 or
higher

An internal conflict was
detected.

Contact a FUJITSU
systems engineer (SE).

o o o o

498 Chapter 14. Communication Functions

Table 56. Windows Sockets function error codes

Description in WINSOCK.H Error
Code

Explanation

WSAEMFILE 10024 A new socket identifier cannot be generated
because all permitted socket identifiers are in
use. Quit unnecessary communication
connections, then re-execute processing.

WSAENOTSOCK 10038 Data other than socket identifiers is specified in
the socket function.

WSAEPROTONOSUPPORT 10043 The specified protocol is not supported. Check
whether the TCP/IP operating environment is
set up correctly.

WSAESOCKTNOSUPPORT 10044 The specified socket type is not supported by
this address family. Check whether the TCP/IP
operating environment is set up correctly.

WSAEAFNOSUPPORT 10047 The specified address family is not supported.
Check whether the TCP/IP operating
environment is set up correctly.

WSAEADDRINUSE 10048 The address for connecting the server is in use.
WASEADDRNOTAVAIL 10049 The client could not be connected with the

server. Check whether the remote machine
name specified in the client definition file is
defined in the hosts file correctly.

WSAENETDOWN 10050 The network subsystem failed. Activate the
network.

WSAENETUNREACH 10051 The host where the client was operating could
not be connected with the host where the
server was operating. Check whether the
network is defined correctly.

WSAENETRESET 10052 The network failed. Reactivate the network.
WSAECONNABORTED 10053 Connection was rejected because of a time-out

or other error, or processing ended abnormally.
Check whether the client and server are
operating normally. This error may be caused
by interference during communication or by a
LAN card error.

Chapter 14. Communication Functions 499

Table 56. Windows Sockets function error codes (cont.)

Description in WINSOCK.H Error
Code

Explanation

WSAECONNRESET 10054 The client or server was reset.
WSAENOBUFS 10055 The communication buffer space is insufficient.

Increase the communication buffer space or
reduce communication traffic.

WSAEISCONN 1056 The client is already connected with the server.
WSAENOTCONN 10057 The client it not connected with the server.
WSAESHUTDOWN 10058 The client was disconnected from the server.
WSAETIMEDOUT 10060 A time-out was detected because the client was

not connected with the server within the
specified time. Check whether the server is
active and whether the machine where the
server is operating is connected to the LAN.

WSAECONNREFUSED 10061 Connection with the server was rejected. Check
whether the server is active.

WSAEDISCON 10101 The client or server was disconnected.
WSANO_DATA 11004 Service name ‘cobci’ is not defined in the

services file. Define the service name ‘cobci’ in
the services file.

500 Chapter 14. Communication Functions

Chapter 15. Database (SQL)

This chapter covers remote database access (ODBC) and explains
how to write embedded SQL in a COBOL program and access a
database with the ODBC driver.

The database (SQL) function accesses a database in a server from
a PC client using embedded SQL. Embedded SQL is a database
manipulation language written in a COBOL source program. The
database function enables distributed development and
development of a variety of application types.

ODBC (Open DataBase Connectivity), proposed by Microsoft
Corp., is an application program interface for database access.

502 Chapter 15. Database (SQL)

ODBC Outline

This section outlines database access with an ODBC driver from
a COBOL application. For an example about using the ODBC
driver, refer to sample program SAMPLE11, supplied with the
database (SQL) function.

The ODBC driver enables access to one or more databases.

The following figure outlines database access using the ODBC
driver.

 Figure 125. Outline of database access using the ODBC driver

Chapter 15. Database (SQL) 503

Configuration of a COBOL Program with SQL

The following shows the configuration of a COBOL program
with SQL:

IDENTIFICATION DIVISION.
 :
ENVIRONMENT DIVISION. (1)
 :
DATA DIVISION.
 :
WORKING-STORAGE SECTION.
 :
 EXEC SQL BEGIN DECLARE SECTION END-EXEC. (2)
01 SQLSTATE PIC X(5).
 :
 EXEC SQL END DECLARE SECTION END-EXEC.
 :
PROCEDURE DIVISION.
 :
 EXEC SQL CONNECT ... END-EXEC. (3)
 :
 EXEC SQL DECLARE CUR1 ... END-EXEC. (4)
 :
 EXEC SQL OPEN CUR1 END-EXEC. (5)
 :
 EXEC SQL FETCH CUR1 ... END-EXEC.
 :
 EXEC SQL CLOSE CUR1 END-EXEC. (6)
 :
 EXEC SQL ROLLBACK WORK END-EXEC.
 :
 EXEC SQL DISCONNECT ... END-EXEC. (7)
 :
 STOP RUN.

Figure 126. Configuration of a COBOL program

(1) No SQL-specific description.

(2) Declare SQLSTATE in the DECLARE section. Define a host
variable if necessary.

(3) Connect to the server.

(4) Declare the cursor, if using one.

(5) Open the cursor.

504 Chapter 15. Database (SQL)

(6) Close the cursor.

(7) Disconnect from the server.

Write SQL in a COBOL program as shown in the previous figure.
Each SQL statement must begin with EXEC SQL (SQL prefix)
and end with END-EXEC (SQL terminator). The database is
processed using the SQL statements written in the PROCEDURE
DIVISION.

Operations Using Embedded SQL

The following operations can be executed with embedded SQL
statements:

• Connection

A client connects to a server to access a database. The
connection enables execution of SQL statements for accessing
a server database from the client. To connect a client and
server, use the CONNECT statement. See “Connecting to a
Server.”

• Selecting a connection

To select connections, use the SET CONNECTION statement.
See “Selecting a Connection.”

• Manipulating data

To manipulate data, use the SELECT, INSERT, UPDATE, and
DELETE statements. If the cursor is defined, the FETCH
statement can be used to fetch data. These statements can be
executed dynamically. See “Manipulating Data.”

• For the correspondence between data handled in COBOL85
and ODBC, see “Correspondence Between ODBC-Handled
Data and COBOL85-Handled Data.”

Chapter 15. Database (SQL) 505

• Transaction processing

Consistency of database data manipulation is ensured within
transaction units. A transaction starts when the first SQL
statement is executed, and terminates when the COMMIT or
ROLLBACK statement is executed.

• Disconnection

To disconnect a program from the server, use the
DISCONNECT statement.

Before executing the DISCONNECT statement, terminate the
transaction. See “Disconnecting from a Server.”

The following sections provide examples of the above operations:

Connection

This section explains methods for connecting, disconnecting, and
selecting a server (connection).

Connecting to a Server

To connect a client to a server, use the CONNECT statement. The
following steps should be used for Client/Server connection:

1. Define server information.

2. Connect to the server by either of the following methods:

• Specify the server name

• Specify DEFAULT

506 Chapter 15. Database (SQL)

Connecting by Specifying the Server Name

Before executing the program, define the server information in
the ODBC information file. For details on the information to be
defined and how to define the information, see “Executing the
Program.”

Specify the server name in the CONNECT statement, and
execute the statement. This will result in the ODBC information
file being searched for the specified server information. If a
section is found having the same name, the server information is
referenced in definition order to establish a connection to the
server.

The server information in the ODBC information file is
referenced at execution of the CONNECT statement when
connecting to the server.

Connecting by Specifying DEFAULT

Before executing the program, define the default connection
information in the ODBC information file. For details definition
information and how to define the information, see “Executing
the Program.”

Specify DEFAULT in the CONNECT statement and execute the
statement. This will result in the default connection information
file for ODBC to be referenced. The server information is defined
in the default connection information. The ODBC information file

Chapter 15. Database (SQL) 507

is searched for the server information. If the server information is
found, it is referenced when connecting to the server.

The default connection information is referenced at execution of
the CONNECT statement.

The SV1 information defined in the default connection
information is referenced to connect the server.

Disconnecting from a Server

To disconnect a client from a server, use the DISCONNECT
statement.

Specify the connection to be terminated in the DISCONNECT
statement. The connection name, DEFAULT, CURRENT, or ALL
can be specified in the DISCONNECT statement. For the
DISCONNECT statement specification, see Figure 127.

Selecting a Connection

To select the available connections, use the SET CONNECTION
statement.

More than one server can be connected by executing the
CONNECT statement for each database to be connected. If an
application connects more than one server, a server for which
SQL statements are to be executed must be defined.

508 Chapter 15. Database (SQL)

If more than one CONNECT statement is executed, the server
connected with the last CONNECT statement will be used as the
current server (current connection).

SQL statements are executed for the current connection. To
execute SQL statements for another connection, use the SET
CONNECTION statement to select the appropriate connection.

The following figure is a COBOL program that illustrates the
connection to multiple servers. The following example shows the
selection of a connection, connecting and disconnecting of these
multiple servers. The example has a default connection, and
connection to servers SV1, SV2, SV3, and SV4 as defined in the
ODBC information file.

Chapter 15. Database (SQL) 509

 :
 EXEC SQL CONNECT TO DEFAULT END-EXEC. (1)
 EXEC SQL
 CONNECT TO 'SV1' AS 'CNN1' USER 'tanaka/sky' (2)
 END-EXEC.
 EXEC SQL
 CONNECT TO 'SV2' AS 'CNN2 USER 'tanaka/sky' (3)
 END-EXEC.
 EXEC SQL
 CONNECT TO 'SV3' AS 'CNN3' USER 'tanaka/sky' (4)
 END-EXEC.
 EXEC SQL
 CONNECT TO 'SV4' AS 'CNN4' USER 'tanaka/sky' (5)
 END-EXEC.
 EXEC SQL DISCONNECT 'CNN4' END-EXEC. (6)
 EXEC SQL SET CONNECTION 'CNN1' END-EXEC. (7)
 :
 EXEC SQL ROLLBACK WORK END-EXEC. (8)
 EXEC SQL DISCONNECT CURRENT END-EXEC. (9)
 EXEC SQL SET CONNECTION DEFAULT END-EXEC. (10)
 :
 EXEC SQL COMMIT WORK END-EXEC. (11)
 EXEC SQL DISCONNECT DEFAULT END-EXEC. (12)
 EXEC SQL SET CONNECTION 'CNN2' END-EXEC.
 :
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL DISCONNECT ALL END-EXEC. (13)

Figure 127. Example showing the connection of multiple servers,
selecting from them, and disconnecting them

(1) The default connection is enabled.

(2) The server SV1 is connected. This connection name is CNN1.

(3) The server SV2 is connected. This connection name is CNN2.

(4) The server SV3 is connected. This connection name is CNN3.

(5) The server SV4 is connected. This connection name is CNN4.
The last-connected CNN4 is the current connection.

(6) The connection name CNN4 is disconnected.

(7) The connection name CNN1 is selected. CNN1 becomes the
current connection.

(8) Any changes made in the CNN1 are canceled.

510 Chapter 15. Database (SQL)

(9) The current connection is disconnected. CNN1 is now the
current connection in the example, so CNN1 is disconnected.

(10) Default connection is selected. The default connection
becomes the current connection.

(11) Any changes made in the default connection are saved.

(12) The default connection is disconnected.

(13) All available connections are disconnected.

Up to 16 servers can be connected using the CONNECT
statement at the same time. The number can vary depending on
the ODBC driver and the related environments.

Chapter 15. Database (SQL) 511

Manipulating Data

This section explains the following data manipulations:

• Retrieving data

• Updating data

• Deleting data

• Inserting data

• Using dynamic SQL

• Using variable length character strings

• Operating the cursor with more than one connection

Also see “Correspondence Between ODBC-Handled Data and
COBOL85-Handled Data.”

512 Chapter 15. Database (SQL)

Sample Database

The following three sample database tables are used in the
program examples which follow:

STOCK table: Shows product numbers (GNO), product names
(GOODS), quantity in stock (QOH), and warehouse numbers
(WHNO).

ORDERS table: Shows company numbers (COMPANYNO),
product trade numbers (GOODSNO), purchase prices (PRICE),
and order quantities (OOH).

COMPANY table: Shows company numbers (CNO), company
names (NAME), telephone numbers (PHONE), and address
(ADDRESS).

STOCK table
GNO GOODS QOH WHNO
110
111
123
124
137
138
140
141
200
201
212
215
226
227
240
243
351
380
390

TELEVISION
TELEVISION
REFRIGERATOR
REFRIGERATOR
RADIO
RADIO
CASSETTE DECK
CASSETTE DECK
AIR CONDITIONER
AIR CONDITIONER
TELEVISION
VIDEO
REFRIGERATOR
REFRIGERATOR
CASSETTE DECK
CASSETTE DECK
CASSER TAPE
SHAVER
DRYER

85
90
60
75
150
200
120
80
4
15
0
5
8
15
25
14
2500
870
540

2
2
1
1
2
2
2
2
1
1
2
2
1
1
2
2
2
3
3

Chapter 15. Database (SQL) 513

ORDERS table
COMPANY NO. GOODSNO PRICE OOH
61
61
61
61
61
61
62
62
62
63
63
63
63
63
71
71
72
72
72
72
72
72
73
73
73
74
74
74
74
74

123
124
138
140
215
240
110
226
351
111
200
201
212
215
140
351
137
140
215
226
243
351
141
380
390
110
111
226
227
351

48000
64000
6400
9000
240000
80000
37500
112500
375
57400
123000
164000
205000
246000
7800
390
3500
7000
210000
105000
84000
350
16000
2400
2400
39000
54000
117000
140400
390

60
40
180
80
10
20
120
20
800
80
60
50
30
10
50
600
120
70
10
20
10
1000
60
250
150
120
120
20
10
700

COMPANY table
CNO NAME PHONE ADDRESS
61
62
63
71
72
73
74

ADAM LTD.
IDEA INC.
MOON CO.
RIVER CO.
DRAGON CO.
BIG INC.
FIRST CO.

731-1111
423-222
143-3333
344-1212
373-7777
391-0808
255-9944

SANTA CLARA CA USA
LONDON W.C.2 ENGLAND
NEW YORK NY USA
PARIS FRANCE
SAN FRANCISCO CA USA
DALLAS TX USA
SYDNEY AUSTRALIA

514 Chapter 15. Database (SQL)

Retrieving Data

This section explains methods for retrieving data from a
database.

Retrieving Data from All Table Rows

The following figure shows a COBOL program used to retrieve
data from all rows of a database table.

 :
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 PRODUCT-NUMBER PIC S9(4) COMP-5. }
01 PRODUCT-NAME PIC X(20). }
01 QUANTITY-IN-STOCK PIC S9(9) COMP-5. } (1)
01 WAREHOUSE-NUMBER PIC S9(4) COMP-5. }
01 SQLSTATE PIC X(5). }
 EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.
 EXEC SQL WHENEVER NOT FOUND GO TO:P-END END-EXEC. (2)
 EXEC SQL
 DECLARE CUR1 CURSOR FOR SELECT * FROM STOCK (3)
 END-EXEC.
P-START.
 EXEC SQL CONNECT TO DEFAULT END-EXEC. (4)
 EXEC SQL OPEN CUR1 END-EXEC. (5)
P-LOOP.
 EXEC SQL
 FETCH CUR1 INTO :PRODUCT-NUMBER, (6)
 :PRODUCT-NAME,
 :QUANTITY-IN-STOCK,
 :WAREHOUSE-NUMBER
 END-EXEC.
 :
 GO TO P-LOOP.
P-END.
 EXEC SQL CLOSE CUR1 END-EXEC. (7)
 EXEC SQL ROLLBACK WORK END-EXEC. (8)
 EXEC SQL DISCONNECT DEFAULT END-EXEC. (9)
 STOP RUN.

Figure 128. Retrieving data from all rows

Chapter 15. Database (SQL) 515

(1) Specifies an embedded SQL DECLARE section in the
WORKING-STORAGE section, and defines the data input
areas (all columns of the STOCK table) as host variables.
Refer to the “COBOL85 Reference Manual” for the host
variable declaration rules.

(2) Operation for an exception event can be specified by
specifying the embedded SQL exception declaration. The
example specifies NOT FOUND as a condition. Therefore, the
exception declaration is effective if "no data" is shown as the
SQLSTATE value. The example specifies executing P-END
procedure when there is no row fetched by the FETCH
statement in (6). Operation for an exception event can also be
specified by checking SQLSTATE with a COBOL IF
statement.

(3) Declares a cursor to define the cursor name for referring to
the STOCK table. The example neither selects any specific
columns from the STOCK table nor specifies any search
conditions. Thus, a table derived from the query expression is
identical to the original STOCK table.

(4) Executes the CONNECT statement to connect the server.

(5) Executes the OPEN statement to enable the specified cursor.

(6) Executes the FETCH statement to fetch data row by row from
the table, and sets the values of each column into the
corresponding host variable area.

(7) Executes the CLOSE statement to disable the specified cursor.

(8) Executes the ROLLBACK statement to terminate the
transaction.

(9) Executes the DISCONNECT statement to disconnect the
server.

516 Chapter 15. Database (SQL)

If an asterisk (*) is specified in the select list of the query
expression, the columns are selected in the order specified when
the table was defined.

Retrieving Data with Conditions Specified

The following illustrates retrieving data for only rows that meet
specified conditions. In the example, the condition of the
quantity in stock (QOH) is tested to be less than 51. It retrieves
the data (product number, product name, and quantity in stock)
of products that meet the condition.

 :
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 PRODUCT-NUMBER PIC S9(4) COMP-5. }
01 PRODUCT-NAME PIC X(20). } (1)
01 QUANTITY-IN-STOCK PIC S9(9) COMP-5. }
01 SQLSTATE PIC X(5). }
 EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.
 EXEC SQL WHENEVER NOT FOUND GO TO :P-END END-
 EXEC.
 EXEC SQL
 DECLARE CUR2 CURSOR FOR (2)
 SELECT GNO, GOODS, QOH FROM STOCK
 WHERE QOH < 51
 END-EXEC.
P-START.
 EXEC SQL CONNECT TO DEFAULT END-EXEC. (3)
 EXEC SQL OPEN CUR2 END-EXEC. (4)
P-LOOP.
 EXEC SQL
 FETCH CUR2 INTO :PRODUCT-NUMBER, (5)
 :PRODUCT-NAME,
 :QUANTITY-IN-STOCK
 END-EXEC.
 :
 GO TO P-LOOP.
P-END.
 EXEC SQL CLOSE CUR2 END-EXEC. (6)
 EXEC SQL ROLLBACK WORK END-EXEC. (7)
 EXEC SQL DISCONNECT DEFAULT END-EXEC. (8)
 STOP RUN.

Figure 129. Retrieving data with conditions specified

Chapter 15. Database (SQL) 517

(1) The embedded SQL DECLARE section defines all host
variables to be specified in embedded SQL statements.

(2) The table is never referred to by declaring a cursor. The table
is referred to when the OPEN statement in (4) is executed.

(3) Executes the CONNECT statement to connect the server.

(4) Executes the OPEN statement to create a virtual table
including rows that meet the condition specified during
cursor declaration in (2). The virtual table is created and rows
showing 50 or less in column QOH are extracted from the
STOCK table, then the data of columns GNO, GOODS, and
QOH are retrieved from the extracted rows. Generally, the
row order of a virtual table is undefined.

(5) Executes the FETCH statement to fetch data row by row from
the beginning of the virtual table created in (4), then writes
the values of each column to the corresponding host variable
area. To retrieve the values of a column in ascending or
descending order, specify the ORDER BY clause at the end of
the query expression in (2).

(6) Executes the CLOSE statement to disable the virtual table
created in (4). The virtual table can no longer be referenced by
executing SQL statements unless the OPEN statement is
executed again.

(7) Executes the ROLLBACK statement to terminate the
transaction.

(8) Executes the DISCONNECT statement to disconnect the
server.

518 Chapter 15. Database (SQL)

Retrieving Data from a Single Row

The following are program examples for retrieving the data of
individual or multiple rows.

Use the SELECT statement if retrieving the data for only one
row. No cursor is used in this case, and cursor declaration and
processing using the OPEN, FETCH, and CLOSE statements is
unnecessary.

The following is the SELECT statement used to retrieve the
product name where the quantity in stock for the product is 200
as noted in the STOCK table:

EXEC SQL
 SELECT GOODS, QOH INTO :PRODUCT-NAME,:QUANTITY-IN-STOCK
 FROM STOCK
 WHERE GNO = 200
END-EXEC.

If a set function is specified as the select list value expression, the
SELECT statement obtains the radix of the table (the number of
rows) and the maximum, minimum, average, and summation
(total) of the specified value expression.

The following is the SELECT statement used to retrieve the
maximum, minimum, and average of the purchase prices in the
ORDERS table:

EXEC SQL
 SELECT MAX(PRICE), MIN(PRICE), AVG(PRICE)
 INTO :MAX-VALUE, :MIN-VALUE, :AVG-VALUE FROM ORDERS
END-EXEC.

The results are set in the host variables MAX-VALUE, MIN-
VALUE, and AVG-VALUE.

Chapter 15. Database (SQL) 519

Retrieving Data from Related Tables

Retrieving Data from a Table Created by Relating Different Tables

Data can be retrieved from a table created by relating different
tables. The tables are related according to their column values.

The following example relates three tables of the sample database
in order to retrieve data. The example specifies TELEVISION as a
target product name, and retrieves the names of companies
which deal with the specified product and the order quantity of
each company.

The STOCK and ORDERS tables are related according to the
product numbers (column GNO) and product trade numbers
(column GOODSNO).

The ORDERS and COMPANY tables are related according to the
company numbers (column COMPANYNO) and company
numbers (column CNO).

The following shows the query expression:

SELECT NAME, OOH
 FROM STOCK, ORDERS, COMPANY
 WHERE GOODS = 'TELEVISION' AND
 GNO = GOODSNO AND
 COMPANYNO = CNO

520 Chapter 15. Database (SQL)

Rows that meet the search conditions are derived from the table
created by relating three tables:

GNO ... WHNO COMPANYNO ..
.

OOH CNO ..
.

ADDRESS

110
110
110

...

...

...

2
2
2

61
61
61

..

.

..

.

..

.

60
60
60

61
62
63

..

.

..

.

..

.

SANTA CLARA CA USA
LONDON W.C.2
ENGLAND
FIFTH AVENUE NY USA

 ~ ~ ~ ~ ~ ~ ~ ~
110
110
110

...

...

...

2
2
2

61
61
61

..

.

..

.

..

.

40
40
40

61
62
63

..

.

..

.

..

.

SANTA CLARA CA USA
LONDON W.C.2
ENGLAND
FIFTH AVENUE NY USA

 ~ ~ ~ ~ ~ ~ ~ ~
111
111
111

...

...

...

2
2
2

61
61
61

..

.

..

.

..

.

60
60
60

61
62
63

..

.

..

.

..

.

SANTA CLARA CA USA
LONDON W.C.2
ENGLAND
FIFTH AVENUE NY USA

 ~ ~ ~ ~ ~ ~ ~ ~
390
390
390

...

...

...

3
3
3

74
74
74

..

.

..

.

700
700
700

72
73
74

..

.

..

.

..

.

SAN FRANCISCO, CA
USA
DALLAS, TX USA
SYDNEY, AUSTRALIA

Yielding the results of the query expression:
NAME OOH
IDEA INC. 120
MOON CO. 80
MOON CO. 30
FIRST CO. 120
FIRST CO. 120

Chapter 15. Database (SQL) 521

Retrieving Data from a Table Where Rows are Related

Data can be retrieved from a table where rows are related in the
same manner as when different tables are related.

The following example retrieves the names of products that are
in the warehouse where televisions (TELEVISION) are stored.
Two different aliases (correlation names) are given to the STOCK
table. They are treated as if they were different tables.

This COBOL program relates table rows and retrieves the
product names in the warehouse which stores televisions
(TELEVISION).

 :
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 PRODUCT-NAME PIC X(20).
 01 SQLSTATE PIC X(5).
 EXEC SQL END DECLARE SECTION END-EXEC.
 PROCEDURE DIVISION.
 EXEC SQL WHENEVER NOT FOUND GO TO :P-END END-EXEC.
 EXEC SQL
 DECLARE CUR4 CURSOR FOR
 SELECT DISTINCT X2.GOODS
 FROM STOCK X1,STOCK X2 (1)
 WHERE X1.GOODS = 'TELEVISION' AND
 X1.WHNO = X2.WHNO
 END-EXEC.
 P-START.
 EXEC SQL CONNECT TO DEFAULT END-EXEC.
 EXEC SQL OPEN CUR4 END-EXEC.
 P-LOOP.
 EXEC SQL
 FETCH CUR4 INTO :PRODUCT-NAME
 END-EXEC.
 :
 GO TO P-LOOP.
 P-END.
 EXEC SQL CLOSE CUR4 END-EXEC.
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

Figure 130. Retrieving data from a table in which rows are related

(1) Specifies correlation names (X1 and X2) for the STOCK table
in the FROM clause of the cursor declaration statement. X1

522 Chapter 15. Database (SQL)

and X2 are treated as if they are different tables. The example
specifies search conditions in the WHERE clause. The column
name is qualified with the correlation names. The rows that
result show products that are in the warehouse storing
televisions (TELEVISION).

Updating Data

Use the UPDATE statement to update table data. The following
example specifies the UPDATE statement to decrement each
quantity in stock (column QOH) of the STOCK table by 10%:

EXEC SQL
 UPDATE STOCK SET QOH = QOH * 0.9
END-EXEC.

This UPDATE statement multiplies each value in column QOH
of the STOCK table by 0.9, and replaces the original value with
the result.

To update values in only rows that meet a specified condition,
specify a search condition in the WHERE clause of the UPDATE
statement.

The following example changes the above UPDATE statement to
decrement only the number of televisions in stock by 10%:

EXEC SQL
 UPDATE STOCK SET QOH = QOH * 0.9
 WHERE GOODS = 'TELEVISION'
END-EXEC.

The previous method cannot update data in a table created by
relating multiple tables.

Chapter 15. Database (SQL) 523

Deleting Data

Use the DELETE statement to delete data. The following example
specifies the DELETE statement to delete all rows showing
CASSETTE DECK from the STOCK table:

EXEC SQL
 DELETE FROM STOCK WHERE GOODS = 'CASSETTE DECK'
END-EXEC.

The previous method cannot delete data from a table created by
relating multiple tables.

Inserting Data

Use the INSERT statement to insert data. Select either of the
following methods to insert data:

• Inserting the data in only one row

• Inserting the data in a set of rows extracted from another
table based on search conditions

Inserting a Single Row

The following example specifies the INSERT statement to add a
row showing product number 301 to the STOCK table. The
product name is WASHER, the quantity in stock is 50, and the
warehouse number is 1:

EXEC SQL
 INSERT INTO STOCK (GNO,GOODS, QOH, WHNO)
 VALUES (301, 'WASHER', 50, 1)
END-EXEC.

524 Chapter 15. Database (SQL)

Inserting Multiple Rows from Another Table

The following example assumes that the database of the STOCK
table contains another stock table (table name: SUBSTOCK,
column names and attributes: same as those of the STOCK
table).

The example specifies the INSERT statement to insert rows
showing product name MICROWAVE OVEN in the SUBSTOCK
table into the STOCK table.

The example also sets the warehouse numbers of all new rows to
2:

EXEC SQL
 INSERT INTO STOCK (GNO, GOODS, QOH, WHNO)
 SELECT GNO, GOODS, QOH, 2 FROM SUBSTOCK
 WHERE GOODS = 'MICROWAVE OVEN'
END-EXEC.

Using Dynamic SQL

To generate SQL statements during program execution and to
execute the statements, use dynamic SQL.

Determining Search Conditions Dynamically

The previous examples use host variables to set search conditions
at execution. The following explains a method of directly
determining search conditions at execution.

Chapter 15. Database (SQL) 525

The following figure is a COBOL program for determining search
conditions at execution through dynamic cursor declaration. It is
the query expression for cursor definition:

SELECT GNO, GOODS, QOH FROM STOCK
 WHERE GOODS = 'REFRIGERATOR' AND QOH < 10

The ACCEPT statement is used to read the query expression at
execution.

 :
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 PRODUCT-NUMBER PIC S9(4) COMP-5.
01 PRODUCT-NAME PIC X(20).
01 QUANTITY-IN-STOCK PIC S9(9) COMP-5.
01 STMVAR PIC X(254). (1)
01 SQLSTATE PIC X(5).
 EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.
 EXEC SQL WHENEVER NOT FOUND GO TO :P-END END-EXEC.
 EXEC SQL
 DECLARE CUR8 CURSOR FOR STMIDT (2)
 END-EXEC.
 ACCEPT STMVAR FROM CONSOLE. (3)
P-START.
 EXEC SQL CONNECT TO DEFAULT END-EXEC.
 EXEC SQL PREPARE STMIDT FROM :STMVAR END-EXEC. (4)
 EXEC SQL OPEN CUR8 END-EXEC. (5)
 P-LOOP.
 EXEC SQL
 FETCH CUR8 INTO :PRODUCT-NUMBER, (6)
 :PRODUCT-NAME,
 :QUANTITY-IN-STOCK
 END-EXEC.
 :
 GO TO P-LOOP.
P-END.
 EXEC SQL CLOSE CUR8 END-EXEC. (7)
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

Figure 131. Specifying search conditions at execution

(1) The SQL statement variable STMVAR is referred to when the
PREPARE statement in (4) is executed.

526 Chapter 15. Database (SQL)

(2) The SQL statement identifier STMIDT is corresponding to the
SQL statement variable STMVAR when the PREPARE
statement in (4) is executed.

(3) Executes the ACCEPT statement to read the query
expression, and sets the read data into the SQL statement
variable STMVAR.

(4) Executes the PREPARE statement corresponding to the
statement (dynamic SELECT statement in the example) and
set in the SQL statement variable STMVAR of the SQL
statement identifier STMIDT.

(5) Executes the dynamic OPEN statement to extract, from the
STOCK table, rows showing a value less than 10 as the
number of refrigerators in stock, then creates a table
including the data of columns GNO (product number),
GOODS (product name), and QOH (quantity in stock) that is
retrieved from the extracted rows.

(6) Executes the dynamic FETCH statement to fetch data row by
row from the table, and sets the values of each column into
the corresponding host variable area.

(7) Executes the dynamic CLOSE statement to disable the
specified cursor and the table corresponding to the cursor.

Determining SQL Statements Dynamically

Dynamic SQL not only determines search conditions in a query
expression through cursor declaration, but dynamically
determines the SQL statements to be executed there. The
following explains methods of determining the SQL statements
using the EXECUTE statement.

The following figure is a COBOL program used to dynamically
execute SQL statements input with the ACCEPT statement. The
example inputs the UPDATE statement at execution:

Chapter 15. Database (SQL) 527

UPDATE STOCK SET QOH = 0 WHERE GOODS = 'TELEVISION'

 :
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 STMVAR PIC X(254).
 01 SQLSTATE PIC X(5).
 EXEC SQL END DECLARE SECTION END-EXEC.
 PROCEDURE DIVISION.
 ACCEPT STMVAR FROM CONSOLE. (1)
 EXEC SQL CONNECT TO DEFAULT END-EXEC.
 EXEC SQL PREPARE STMIDT FROM :STMVAR END-EXEC. (2)
 EXEC SQL EXECUTE STMIDT END-EXEC. (3)
 :
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

Figure 132. Dynamically determining SQL statements (1)

(1) Executes the ACCEPT statement to read the UPDATE
statement, and sets the read data into the SQL statement
variable STMVAR.

(2) Executes the PREPARE statement corresponding to the
statement (the UPDATE statement in the example) set in the
SQL statement variable STMVAR of the SQL statement
identifier STMIDT.

(3) The EXECUTE statement executes the prepared statement
that is associated with the specified SQL statement identifier.

If parameter specification is not required for dynamically
determining SQL statements, the EXECUTE IMMEDIATE
statement can be used instead of the EXECUTE statement.

528 Chapter 15. Database (SQL)

The following COBOL program illustrates the use of the
EXECUTE IMMEDIATE statement to perform the same
processing as shown in previous figure. The UPDATE statement
used is specified at execution.

:
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 STMVAR PIC X(254).
 01 SQLSTATE PIC X(5).
 EXEC SQL END DECLARE SECTION END-EXEC.
 PROCEDURE DIVISION.
 ACCEPT STMVAR FROM CONSOLE. (1)
 EXEC SQL CONNECT TO DEFAULT END-EXEC.
 EXEC SQL EXECUTE IMMEDIATE :STMVAR END-EXEC. (2)
 :
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

Figure 133. Dynamically determining SQL statements (2)

(1) Executes the ACCEPT statement to read the UPDATE
statement, then writes the read data to SQL statement
variable STMVAR.

(2) The EXECUTE IMMEDIATE statement directly executes the
SQL statements written to the SQL statement variable.

Chapter 15. Database (SQL) 529

Specifying Dynamic Parameters

The following a COBOL program which illustrated the
specification of dynamic parameters and retrieving data from the
STOCK table. The example processes the SELECT statement at
execution:

SELECT GNO, GOODS FROM STOCK WHERE WHNO = ?

 :
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 PRODUCT-NUMBER PIC S9(4) COMP-5.
 01 PRODUCT-NAME PIC X(20).
 01 QUANTITY-IN-STOCK PIC S9(9) COMP-5.
 01 WAREHOUSE-NUMBER PIC S9(4) COMP-5.
 01 STMVAR PIC X(254).
 01 SQLSTATE PIC X(5).
 01 SQLMSG PIC X(254).
 EXEC SQL END DECLARE SECTION END-EXEC.
 PROCEDURE DIVISION.
 EXEC SQL WHENEVER NOT FOUND GO TO :P-END END-EXEC.
 EXEC SQL
 DECLARE CUR11 CURSOR FOR STMIDT (1)
 END-EXEC.
 ACCEPT STMVAR FROM CONSOLE. (2)
 P-START.
 EXEC SQL CONNECT TO DEFAULT END-EXEC.
 EXEC SQL PREPARE STMIDT FROM :STMVAR END-EXEC. (3)
 ACCEPT WAREHOUSE-NUMBER FROM CONSOLE. (4)
 EXEC SQL OPEN CUR11 USING:WAREHOUSE-NUMBER
 END-EXEC. (5)

 P-LOOP.
 EXEC SQL
 FETCH CUR11 INTO :PRODUCT-NUMBER,:
 PRODUCT-NAME (6)
 END-EXEC.
 :
 GO TO P-LOOP.
 P-END.
 EXEC SQL CLOSE CUR11 END-EXEC. (7)
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

Figure 134. Specifying dynamic parameters

530 Chapter 15. Database (SQL)

(1) Defines CUR11 through dynamic cursor declaration.

(2) Executes the ACCEPT statement to read the dynamic
SELECT statement.

(3) Executes the PREPARE statement to correspond the
statement set in the SQL statement variable STMVAR to the
SQL statement identifier STMIDT.

(4) Reads the search condition values corresponding to dynamic
parameters.

(5) Executes the dynamic OPEN statement to extract rows
matching the search conditions from the table. The values
specified in the USING clause are referred to as the values of
the dynamic parameters in the prepared statement. The
values specified in the USING clause and the dynamic
parameters in the prepared statement are associated in the
order they appear.

(6) Executes the dynamic FETCH statement to fetch data row by
row from the table, and then writes the values of each column
to the host variables specified in the INTO clause.

(7) Executes the dynamic CLOSE statement to disable the
specified cursor and the table corresponding to the cursor.

Using Variable Length Character Strings

This section explains how to use variable length character strings
as the host variables of a COBOL program.

To operate variable length character string data, the length of the
character string is needed. Host variables of a variable length
character string type are defined as the following items:

• Signed binary item for storing the character string length
information.

Chapter 15. Database (SQL) 531

• Group item (an alphanumeric item or national item) for
storing character strings.

The following figure illustrates retrieving an address from the
COMPANY table. The host variable used as the search condition
and the host variable used for storing variable length character
string data.

 :
 EXEC SQL BEGIN DECLARE SECTION END.
 01 COMPANY-NAME PIC X(20).
 01 TELEPHONE-NUMBER. }
 49 TELEPHONE-NUMBER-LENGTH PIC S9(4) COMP-5. }
 49 TELEPHONE-NUMBER-STRING PIC X(20). } (1)
 01 ADDRESS. }
 49 ADDRESS-LENGTH PIC S9(9) COMP-5. }
 49 ADDRESS-STRING PIC X(30). }
 01 SQLSTATE PIC X(5).
 EXEC SQL END DECLARE SECTION END-EXEC.
 PROCEDURE DIVISION.
 DISPLAY "Retrieves company according to telephone
 number."
 DISPLAY "Input telephone number. ->" WITH NO ADVANCING.
 ACCEPT TELEPHONE-NUMBER-STRING FROM CONSOLE. (2)
 INSPECT TELEPHONE-NUMBER-STRING (3)
 TALLYING TELEPHONE-NUMBER-LENGTH
 FOR CHARACTERS BEFORE SPACE.
 EXEC SQL CONNECT TO DEFAULT END-EXEC.
 EXEC SQL
 SELECT NAME,ADDRESS INTO :COMPANY-NAME,
 :ADDRESS (4)
 FROM COMPANY
 WHERE PHONE = :TELEPHONE-NUMBER
 END-EXEC.
 :
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

Figure 135. Operating variable length character string data

(1) Declares variable length character strings as host variables.

(2) Executes the ACCEPT statement to read the value of the host
variable used as the search condition, and sets the value as
TELEPHONE-NUMBER-STRING.

(3) Sets the length of the read value as TELEPHONE-NUMBER-
LENGTH.

532 Chapter 15. Database (SQL)

(4) Executes the SELECT statement (single row) to retrieve the
row meeting the search condition from column ADDRESS.
The length and value of the retrieved character string are set
into the host variable "ADDRESS".

If the data of a host variable used as a search condition is a
character string type or a national character string type, define
the length of the host variable to be equal to or shorter than the
length of the character string.

Chapter 15. Database (SQL) 533

Operating the Cursor with More than One Connection

This section explains how to operate a cursor with more than one
connection. The following COBOL program is used for operating
the cursor in the following conditions:

• SV1 and SV2 exist as servers

• Both servers contain a table under the same name and in the
same format.

 :
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 PRODUCT-NUMBER PIC S9(4) COMP-5.
 01 PRODUCT-NAME PIC X(20).
 01 QUANTITY-IN-STOCK PIC S9(9) COMP-5.
 01 WAREHOUSE-NUMBER PIC S9(4) COMP-5.
 01 SQLSTATE PIC X(5).
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 NEXTFLAG PIC X(4) VALUE SPACE.
 PROCEDURE DIVISION.
 EXEC SQL DECLARE CUR9 CURSOR FOR (1)
 SELECT * FROM STOCK
 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND
 GO TO :P-NEXT END-EXEC. (2)
 P-START.
 EXEC SQL
 CONNECT TO 'SV1' AS 'CNN1' USER 'summer/w43' (3)
 END-EXEC.
 EXEC SQL
 CONNECT TO 'SV2' AS 'CNN2' USER 'tanaka/sky' (4)
 END-EXEC.
 P-CNN2-1.
 EXEC SQL OPEN CUR9 END-EXEC. (5)
 GO TO P-LOOP.
 P-NEXT.
 IF NEXTFLAG = "NEXT" THEN
 GO TO P-CNN1-2
 END-IF.

Figure 136. Operating a cursor with more than one connection

534 Chapter 15. Database (SQL)

 P-CNN1-1.
 EXEC SQL SET CONNECTION 'CNN1' END-EXEC. (7)
 EXEC SQL
 INSERT INTO STOCK (8)
 VALUES(:PRODUCT-NUMBER, :PRODUCT-NAME,
 :QUANTITY-IN-STOCK, :WAREHOUSE-NUMBER)
 END-EXEC.
 EXEC SQL OPEN CUR9 END-EXEC. (9)
 MOVE "NEXT" TO NEXTFLAG.
 GO TO P-LOOP.
 P-CNN1-2.
 EXEC SQL CLOSE CUR9 END-EXEC. (10)
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL DISCONNECT 'CNN1' END-EXEC.
 P-CNN2-2.
 EXEC SQL SET CONNECTION 'CNN2' END-EXEC. (11)
 EXEC SQL CLOSE CUR9 END-EXEC. (12)
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL DISCONNECT CURRENT END-EXEC.
 P-END.
 STOP RUN.
 P-LOOP.
 EXEC SQL
 FETCH CUR9 (6)
 INTO :PRODUCT-NUMBER, :PRODUCT-NAME,
 :QUANTITY-IN-STOCK, :WAREHOUSE-NUMBER
 END-EXEC.
 :
 GO TO P-LOOP.

Figure 136. Operating a cursor with more than one connection (cont.)

(1) Defines the cursor for retrieving data from the table.

(2) Specifies branching to the procedure name P-NEXT if there
is no row to be retrieved when the embedded SQL exception
declaration is specified.

(3) The server SV1 is connected. This connection name is CNN1.

(4) The server SV2 is connected. This connection name is CNN2.
CNN2 is the current connection.

(5) Executes the OPEN statement in the server with CNN2 to
enable the cursor CUR9.

(6) Executes the FETCH statement to fetch data row by row
from the table, then writes the values of each column to the
corresponding host variable area.

Chapter 15. Database (SQL) 535

(7) Select the current connection to CNN1.

(8) Executes the INSERT statement to insert a row into the
STOCK table of the server with CNN1.

(9) Executes the OPEN statement in the server with CNN1 to
enable the cursor CUR9. The cursor CUR9 is treated as
another cursor different from the cursor that was opened in
the server with CNN2.

(10) Executes the CLOSE statement in the server with CNN1 to
disable the cursor CUR9.

(11) Select the current connection to CNN2. Note that the cursor
CUR9 is still enabled in the server with CNN2.

(12) Executes the CLOSE statement in the server with CNN2 to
disable the cursor CUR9.

Compiling the Program

Specify a database access method so that a COBOL program
accessing a database using embedded SQL via an ODBC driver
can be compiled with the COBOL85 compiler.

To enable case-sensitivity for host variable names, specify the
NOALPHAL compiler option before compiling the program.

Note: Embedded SQL keywords cannot be used as user-defined
names.

536 Chapter 15. Database (SQL)

Executing the Program

This section explains how to construct the program execution
environment, and how to use the ODBC Information Setup Tool.

Constructing the Program Execution Environment

An initialization file (COBOL85.CBR) where run-time
environment information is specified, and the ODBC information
file are required for program execution. Specify information in
the files so that the files are related as follows:

• Specify the ODBC information file name
(C:\DBMSACS.INF).

Chapter 15. Database (SQL) 537

• If a server name is specified in the CONNECT statement,
specify the server name in the ODBC information file.

• If DEFAULT is specified in the CONNECT statement, specify
a fixed character string indicating the definition of default
connection information in the ODBC information file.

• To define the data source name of each server specified in the
ODBC information file, specify the data source name defined
in the Windows system ODBC control panel.

Setting Runtime Environment Information

To select the ODBC environment as client-server linkage
software, specify the information shown below in the Runtime
Environment Information and is reflected in the initialization file
(COBOL85.CBR). The file can also be edited.

@ODBC_Inf (specification of the ODBC information file name)

@ODBC_Inf=C:\DBMSACS.INF

Specify the file name that the COBOL85 run-time system will
refer when using ODBC. See “Creating an ODBC Information
File” for more information.

Creating an ODBC Information File

An ODBC information file mainly contains information for
connecting a client and server. Use the CONNECT statement to
specify the connection.

Use the ODBC Information Setup Tool to create an ODBC
information file. See “Using the ODBC Information Setup Tool”
for more information.

The contents of an ODBC information file is classified into server
information and default connection information.

538 Chapter 15. Database (SQL)

Defining Server Information

The following table defines server information.

Table 57. How to define server information

Information Name
[Server Name]

Definition
[Server Name]

Remarks
[Connect Sentence server name or
default connection information]

@SQL_DATASCR Data source name Specify the data source name defined
(added) on the Windows system
ODBC control panel.

@SQL_ACCESS_MODE Access mode
 READ_ONLY
 READ_WRITE

Specify an access mode for the data
source. The default is READ_ONLY.
To enable the read only mode, specify
READ_ONLY.
To enable the read-write mode,
specify READ_WRITE. Operation in
the specified mode can vary
READ_WRITE based on the
capabilities of the ODBC driver.

@SQL_COMMIT_MODE Commit mode
 MANUAL
 AUTO

Specify a commit mode (operation of
transaction) for the data source.
The default is MANUAL. If
MANUAL is specified, SQL operation
is determined by specifying the
COMMIT or ROLLBACK statement in
the COBOL source program.
If AUTO is specified, operation is
determined each time an SQL
statement is executed, regardless of
the specification in the COBOL source
program. If AUTO is specified, SQL
statement processing is reflected into
the database at execution of the SQL
statement. As a result, the database
cannot be restored to the original
status with a ROLLBACK statement.
Manual should be specified to avoid
this problem.

Chapter 15. Database (SQL) 539

@SQL_QUERY_TIMEOUT(32) Timeout(seconds) Specify the number of seconds to wait
for a SQL statement to execute before
returning to the application. The
timeout range must be between 0 and
4294967285 (seconds). The default is 0
meaning that there is not timeout
limit.
Operation of the timeout can vary
depending on the ODBC driver. If
errors occur for timeout the
specification should be removed.

SQL_CONCURRENCY(32) Cursor
concurrency
mode
 READ_ONLY
 LOCK
 ROWVER
 VALUES

Specify the cursor concurrency.
Concurrency is the ability of more
than one user to use the same data at
the same time. The default is
READ_ONLY. Refer to the next table
for more information. Operation for
the cursor concurrency mode can vary
depending on the ODBC driver.

NOTE: The ODBC Information Setup Tool cannot be used to set
@SQL_QUERY_TIMEOUT and @SQL_CONCURRENCY. This
information must be manually placed in the COBOL85.CBR file
using a text editor.

540 Chapter 15. Database (SQL)

Table 58. Operation for the cursor concurrency mode of @SQL_CONCURRENCY (32)

Mode Operation

READ_ONLY FETCH statement is allowed. No position UPDATE and DELETE statements
are allowed.

LOCK FETCH, position
UPDATE and
position DELETE
statements are
allowed.

NO
CONCURRENCY

When processing FETCH,
position UPDATE and
position DELETE statements,
the table is locked and
operations from sever or other
clients wait until operation is
complete.

ROWVER CONCURRENCY FETCH statement using same
data is allowed. When
processing position UPDATE
or DELETE statements, and a
row is changed, the
transaction containing the
update or delete operation
fails. If the row has not
changed, the table is locked
until the operation is
complete.
To determine if a row has
changed, the rows and
versions should be compared.

VALUE Operation is the same as
ROWVER. To determine if a
row has changed, the data
values should be compared.

Note: Operation for the cursor concurrency mode of
@SQL_CONCURRENCY depends on the data source. (32)

Chapter 15. Database (SQL) 541

Defining Default Connection Information

If DEFAULT is specified in the CONNECT statement, connection
is established.

A user ID and password defined in default connection
information are used for establishing connection if server name is
specified in the CONNECT statement, but the user ID and
password are omitted.

The following table defines default connection information.

Table 59. How to define default connection information

Information Name Definition Remarks
[SQL_DEFAULT_INF] Fixed character

string
Specify the fixed character string (section
name) indicating the start of definition of
default connection information.

@SQL_SERVER Server name Specify the name of a server where default
connection is to be established. This server
name is used for retrieving the definition
information of each server and for
establishing connection for the data source
for each server. The definition information
must be specified.

@SQL_USERID User ID Specify the user ID for operating the data
source of the server.

@SQL_PASSWORD Password Specify the password for operating the
data source of the server. Use the ODBC
Information Setup Tool to encrypt the
password.

Note: Specify both user IDs and passwords. Neither can be
omitted.

542 Chapter 15. Database (SQL)

Using the ODBC Information Setup Tool

The ODBC information setup tool allows you to set information
in the ODBC information file in order to access remote databases
via ODBC.

The following functions are provided in ODBC information setup
tool.

• Select an ODBC information file

• Set server information

• Set default connection information

To use the ODBC information setup tool, follow the steps below
(Refer to the online help for additional details).

1. Start the ODBC information setup tool.
Use the SQLODBCS.EXE to start the ODBC information
setup tool.

2. Select an ODBC information file.
Specify an ODBC information file to set up connection
information. If a file does not exist, create one with a text
editor.

3. Setup the server information.
Use the CONNECT statement or select default connection
information to set the server name.

4. Setup the default connection information.
Use the CONNECT statement with the DEFAULT
specification to set default connection information (server
name, user ID, and password).

Chapter 15. Database (SQL) 543

Maximum Length of Information Specified in the ODBC
Information File

The following table shows the maximum length of information
specified in an ODBC information file.

Table 60. ODBC information file specifications

Information Type Maximum Length Remarks
User ID 32 bytes The maximum length depends on the

specification of the data source used for
establishing the connection. Refer to the
ODBC manual for more information about
the ODBC driver environment.

Password 32 bytes
Server name 32 bytes -------------------
Data source name 32 bytes -------------------

Use the ODBC Information Setup Tool to set up a password. The
password must be encrypted. Do not edit the password with an
editor.

Preparing Linkage Software and the Hardware
Environment

Prepare the linkage software and hardware environment for a
COBOL application program to access a server database through
ODBC using the following procedures:

Setting Up the ODBC Environment

• Install ODBC in the Windows system. If the ODBC
environment is installed in the Windows system for the first
time, use the ODBC setup supported with the ODBC driver.

• ODBC is added to the Windows control panel. Install the
ODBC driver, then create a data source. Start the ODBC

544 Chapter 15. Database (SQL)

control panel (usually in a Windows control panel group),
then set it up. The ODBC driver is installed and the data
source is defined.

• Prepare the ODBC driver environment. An ODBC driver is
designed to assume the environment where it operates. For
information on the ODBC driver environment, refer to the
manual and help information of the ODBC driver. The help
information can be referenced by starting the ODBC control
panel.

 Confirming a Connection with the Data Source

A database usually supports programs for a client to operate a
server database. Before executing a COBOL application program
using ODBC, use the programs to check whether the client and
server are connected normally.

Execute the COBOL application program after completing the
setup of the ODBC control panel, with the runtime environment
information which is placed in initialization file
(COBOL85.CBR), and the ODBC information file.

Chapter 15. Database (SQL) 545

Embedded SQL Keyword List

This section gives a keyword list for embedded SQL.

[A]
ABSOLUTE
ADA
ADD
ALL
ALLOCATE
ALTER
AND
ANY
ARE
AS
ASC
ASSERTION
AT
AUTHORIZATION
AVG
[B]
BEGIN
BETWEEN
BIND
BIT
BIT_LENGTH
BY
[C]
CASCADE
CASCADED
CASE
CAST
CATALOG
CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHARACTER_SET_CATALOG
CHARACTER_SET_NAME
CHARACTER_SET_SCHEMA
CHECK
CLOSE
COALESCE

COBOL
COLLATE
COLLATION
COLLATION_CATALOG
COLLATION_NAME
COLLATION_SCHEMA
COLUMN
COMMIT
CONNECT
CONNECTION
CONSTRAINT
CONSTRAINTS
CONTINUE
CONVERT
CORRESPONDING COUNT
CREATE
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP_ CURSOR
[D]
DATA
DATE
DATETIME_INTERVAL_CODE
DATETIME_INTERVAL_PRECISION
DAY
DEALLOCATE
DEC
DECIMAL
DECLARE
DEFAULT
DEFERRABLE
DEFERRED
DELETE
DESC
DESCRIBE
DESCRIPTOR
DIAGNOSTICS
DICTIONARY

546 Chapter 15. Database (SQL)

DISCONNECT
DISPLACEMENT
DISTINCT
DOMAIN
DOUBLE
DROP
[E]
ELSE
END
END-EXEC
ESCAPE
EXCEPT
EXCEPTION
EXEC
EXECUTE
EXISTS
EXTERNAL
EXTRACT
[F]
FALSE
FETCH
FIRST
FLOAT
FOR
FOREIGN
FORTRAN
FOUND
FROM
FULL
[G]
GET
GLOBAL
GO
GOTO
GRANT
GROUP
[H]
HAVING
HOUR
[I]
IDENTITY
IGNORE
IMMEDIATE
IN
INCLUDE
INDEX
INDICATOR
INITIALLY
INNER

INPUT
INSENSITIVE
INSERT
INTEGER
INTERSECT
INTERVAL
INTO
IS
ISOLATION
[J]
JOIN
[K]
KEY
[L]
LANGUAGE
LAST
LEFT
LENGTH
LEVEL
LIKE
LIST
LOCAL
LOWER
[M]
MATCH
MAX
MIN
MINUTE
MODULE
MONTH
MUMPS
[N]
NAME
NAMES
NATIONAL
NCHAR
NEXT
NONE
NOT
NULL
NULLABLE
NULLIF
NUMERIC
[O]
OCTET_LENGTH
OF
OFF
ON
ONLY

Chapter 15. Database (SQL) 547

OPEN
OPTION
OR
ORDER
OUTER
OUTPUT
OVERLAPS

[P]
PARTIAL
PASCAL
PLI
POSITION
PRECISION
PREPARE
PRESERVE
PREVIOUS
PRIMARY
PRIOR
PRIVILEGES
PROCEDURE
PUBLIC
[R]
RELATIVE
RESTRICT
REVOKE
RIGHT
ROLLBACK
ROWS
[S]
SCALE
SCHEMA
SCROLL
SECOND
SECTION
SELECT
SEQUENCE
SET
SIZE
SMALLINT
SOME
SQL
SQLCA
SQLCODE
SQLERROR
SQLSTATE
SQLWARNING
START
SUBSTRING

SUM
SYSTEM
[T]
TABLE
TEMPORARY
THEN
TIME
TIMESTAMP
TIMEZONE_HOUR
TIMEZONE_MINUTE
TO
TRANSACTION
TRANSLATE
TRANSLATION
TRUE
TYPE
[U]
UNION
UNIQUE
UNKNOWN
UPDATE
UPPER
USAGE
USER
USING
[V]
VALUE
VALUES
VARCHAR
VARIABLES
VARYING
VIEW
[W]
WHEN
WHENEVER
WHERE
WITH
WORK
[Y]
YEAR

548 Chapter 15. Database (SQL)

Correspondence Between ODBC-Handled
Data and COBOL85-Handled Data

COBOL85 handles the ODBC data corresponding definitions
listed in the following table. To understand how an ODBC driver
handles ODBC SQL data, refer to ODBC driver users guide and
online help.

Data contents can only be assured when data correspondence as
defined in the following table is used.

Table 61. Correspondence between ODBC and COBOL85 data handling

Arithmetic Data:
ODBC SQL Data Type COBOL85 Description

Binary SQL_SMALLINT (SMALLINT) PIC S9(4) BINARY or PIC S9(4) COMP-5
SQL_INTEGER (INTEGER) PICS9(9) BINARY or PIC S9(9) COMP-5

Decimal SQ:_DECIMAL (DECIMAL) PIC S(9p) PACKED-DECIMAL or
PIC S9(p)V9(q) PACKED-DECIMAL
1 =< p =<15, 1=< q, p+q =<18

SQL_NUMERIC (NUMERIC) {PIC S9(p) }
{PIC S9(p)V9(q)}
[SIGN IS
 {LEADING SEPARATE CHARACTER}
 {TRAILING }
]
1 =< p =<15, 1=< q, p+q =<18

Internal floating
point

SQL_REAL (REAL) COMP-1

SQL_DOUBLE (FLOAT) COMP-2

Chapter 15. Database (SQL) 549

Character Data:
ODBC SQL Data Type COBOL85 Description

Fixed length SQL_CHAR
(CHAR)

PIC X(n) 1=< n =< 254
PIC N(n) 1=< n =<127 (*1)

Variable SQL_VARCHAR
(VCHAR)

01 data-name-1.
 49 data-name-2 PIC S9(m) COMP-5.
 49 data-name-3 PIC X(n).
 m = 4 or 9
 1 =< n =< 254 (*2)

01 data-name-1
 49 data-name-2 PIC S9(m) BINARY.
 49 data-name-3 PIC X(n).
 or
01 data-name-1. (*1)
 49 data-name-2 PIC S9(m) BINARY.
 49 data-name-3 PIC N(n).
 m = 4 or 9
 1 =< n =< 254 (*2)

*1: Depends on the database that supports national character data and the database-related
products.
*2: Specify the number of characters for the variable length of character data.

550 Chapter 15. Database (SQL)

SQLSTATE, SQLCODE, and SQLMSG

This section describes information which is shown in the
notification area of the COBOL, ODBC driver manager, ODBC
driver, or DBMS if an SQL statement is executed using ODBC.

The following table explains information posted as SQLSTATE,
SQLCODE, and SQLMSG.

Table 62. SQLSTATE, SQLCODE, and SQLMSG information

Information Value Posted Explanation Programmer Response
SQLSTATE 000000 Normal termination _______________________

5 alphanumeric
characters

Error or warning during
execution of an SQL
statement

CHECK SQLCODE and
SQLMSG, and take action
if error is detected. For
SQLSTATE information,
Refer to the ODBC SDK
manual.

SQLCODE 0 Normal termination _______________________

Negative integer
other than 0

Error or warning during
execution of an SQL
statement

Check the cause of the
error according to the
ODBC environment (such
as ODBC or DBMS)
manual, and take
corrective action on the
error.

SQLMSG Blank (no
output)

Normal termination ________________________

Message
(character string)

The message explains an
error or warning posted
during execution of an SQL
statement

Check the cause of the
error according to the
displayed message, and
take corrective action on
the error.

Chapter 15. Database (SQL) 551

The following describes errors which might be detected by
COBOL during execution of an embedded SQL statement. The
information is posted as SQLSTATE, SQLCODE, and SQLMSG.

Table 63. SQLSTATE, SQLCODE, and SQLMSG error information

SQLSTATE SQLCODE SQLMSG Programmer response
99999 -999999999 The connection has been

established with the same
connection name

A connection name must
not be specified for more
than one connection.
Specify a unique name for
each connection.

9999A -999999990 The number of connections
exceeds the maximum.

The number of connections
exceeds the maximum
specified in the COBOL
system. Decrease the
number of connections. The
maximum number of
connections can vary
depending on the ODBC
environment. Refer to the
ODBC environment
manual and take action.

9999B -999999800 The specified connection
does not exist.

SQL statements cannot be
executed because the
connection is not active.
Check the SQL statement
sequence in the program,
and take corrective action
on the error.

999SA -999999700 The cursor is not opened. The cursor is not ready.
Check the sequence of SQL
statements using the
cursor, and take corrective
action for the error.

999SB -999999600 The prepared statement is
not prepared.

Check the sequence of
dynamic SQL statements,
and take corrective action
for the error.

????? -999999992 Invalid process occurred. A system error occurred.

552 Chapter 15. Database (SQL)

Notes on Using the ODBC Driver

This section explains usage notes for ODBC drivers. Pay special
attention to this section, since it covers important usage
information.

Notes on SQL Statement Syntax

DATA DIVISION

The correspondence between ODBC data types and host variable
data types is defined for COBOL85. See “Correspondence
Between ODBC-Handled Data and COBOL85-Handled Data” for
more information. Data contents are assured for only the defined
data correspondence as specified.

Some data types may not be handled by COBOL as host
variables depending on the ODBC driver specification.

PROCEDURE DIVISION

Embedded SQL statements that can be used and the statement
specification method are different between ODBC drivers.

If embedded SQL statements are specified in the COBOL source
program, refer to product manuals as well as the COBOL
specification for:

• ODBC driver

• Software and hardware related to the ODBC driver

• Database management system

Chapter 15. Database (SQL) 553

Use the COMMIT or ROLLBACK statements to terminate
transactions. Otherwise, the operation may not be assured.
Before using the DISCONNECT statement to terminate a
connection, execute the COMMIT or ROLLBACK statement to
terminate the transaction.

The SQL descriptor area cannot be used. Therefore, do not
specify the following embedded SQL statements:

• INTO and USING clauses in which a descriptor name is
specified

• SQL statements for the descriptor area: ALLOCATE
DESCRIPTOR, DEALLOCATE DESCRIPTOR, GET
DESCRIPTOR, SET DESCRIPTOR, and DESCRIBE
statements

You cannot specify the DEALLOCATE PREPARE statement.

You cannot specify any SQL statement for data definition (DDL).

When using a dynamic SQL statement such as the PREPARE,
EXECUTE, or EXECUTE IMMEDIATE statement, NOT FOUND
specification in the WHENEVER clause is not available.

Details on the embedded SQL statement syntax comply with the
database specification and the specification of the database
related products.

Notes on Executing Embedded SQL Statements

Embedded SQL statements that can be used and the methods of
specifying the statements are different between ODBC drivers.

If embedded SQL statements are specified in the COBOL source
program, refer to product manuals as well as the COBOL
specification for:

• ODBC driver

554 Chapter 15. Database (SQL)

• Software and hardware related to ODBC driver

• Database management system

To quit transactions, use the COMMIT or ROLLBACK
statements; otherwise, the operation may not be guaranteed.
Before using the DISCONNECT statement to terminate a
connection, execute the COMMIT or ROLLBACK statements to
terminate the transaction.

If X'00' is stored as a value in character data, the storage and
fetch results are not assured.

Details on the embedded SQL statement syntax comply with the
database specification and the specification of the database-
related products.

Quantitative Limits of Embedded SQL Statement at
Execution

An embedded SQL statement can be up to 4,096 bytes in length.
The maximum length may be shorter depending on the ODBC
driver environment.

For example, the maximum length of an embedded SQL
statement may be shorter than 4,096 bytes because of the
maximum length of data transferred by the software product
responsible for the network.

If the ODBC driver processes data in an embedded SQL
statement from COBOL, the embedded SQL statement may be
longer than specified in the COBOL source program.

An area for input and output processing between a client and
server can be up to 8,192 bytes in length. The sum of the input
variable length and output variable length must be within the
allowable range. The area may be shorter than 8,192 bytes
depending on the ODBC driver environment.

Chapter 16. Distributed
Development Support Functions

COBOL85 uses the SIA COBOL syntax (defined in the FUJITSU
COBOL Reference Manual). A program written according to the
SIA specification can be developed under this system. The
developed program can operate under various types of systems.

This chapter explains distributed development with the system
of GS-series (M-series) application program as a host. Note: This
chapter is only applicable if you are running M-series or GS-
series.

556 Chapter 16. Distributed Development Support Functions

Outline of Distributed Development

COBOL85 enables development of a program that operates with
the Global server (hereafter referred to as GS or GS program). To
operate a host program that uses a function specific to the Global
server system, requirements for the operating environment
(movement method) must be cleared. For information about
specific functions, refer to Appendix I, “GS-series Function
Comparison.”

For clarification between the GS-series and the previous M-series
systems, the following terms are defined:

GS-series

The successor to the M-series; it is the same as the M-series.

Global server

GS-series (M-series) as it is seen from the system.

GS program

A program that works with the GS-Series (M-series).

GS-specific function

 A function that can only be used with the GS-series (M-series)
system.

Chapter 16. Distributed Development Support Functions 557

Scope of Distributed Development
Functions

The following figure is a diagram of the scope of GS-series
functions and COBOL85 functions.

Operation of the common functions shown in Figure 137 can be
checked under this system. To what extent GS-series functions
can be developed under this system differs depending on the
functions.

Refer to Appendix I, “GS-series Function Comparison” for notes
on handling the functions specific to GS-host and operating host
programs under this system.

558 Chapter 16. Distributed Development Support Functions

Figure 137. Scope of GS-series functions and COBOL85 functions

Chapter 16. Distributed Development Support Functions 559

Distributed Development Support
Functions

The distributed development support functions support the
environment for operating the following two host-specific
functions. The environment enables operation from compilation
to module testing under this system.

• Presentation file function

• Network database function

For the presentation file module test function used with the
presentation file function, see “Presentation File Module Test
Function.”

Target Language Construct

This section shows the language construct of host-specific
functions used as support functions.

Presentation File

Destination APL, CMD, TRM, or WST.

Network Database

Database manipulation language (DML)

• IF DB-EXCEPTION statement

560 Chapter 16. Distributed Development Support Functions

System Control

• TRANSACTION management statement

• USE FOR DB-EXCEPTION statement

• USE FOR DEAD-LOCK statement

Usage

Required Resources

This section explains software and resources required for
operation, from GS program compilation to the module test
under this system.

Software

• COBOL85 compiler (required)

• COBOL85 run-time system (required)

• COBOL85 debugger (required)

• COBPRTST command program file (required for presentation
file module test)

Resources

• Subschema definition file

A subschema definition file is required to compile a GS
program that uses network database functions. A subschema
definition file contains the definition information of an area
for communication (FCOM) with a GS-based advanced
information management (AIM) system and an AIM

Chapter 16. Distributed Development Support Functions 561

expansion record area (UWA). The definition information is
fetched from the AIM directory of the host machine. The
extension CBL is given to the subschema name specified in
the subschema name paragraph of the GS program.

To fetch the subschema definition file from the GS, use the
subschema fetch tool (GETSSCH). See GETSSCH.TXT.

Compiling a GS Program

Compiler Options to be Specified

TEST: Whenever a debugger is used, specify this option.

AIMLIB (directory-name): To compile a GS program using a
network database, specify this option. The directory name of the
subschema definition file must be specified for directory-name.

GEN/NOGEN: To write the FCOM and UWA expansion
information to the compilation list, specify GEN; otherwise,
specify NOGEN.

Compilation Results

A W-level message indicating GS-specific functions is produced
for the following specified in the COBOL source program:

• Network database manipulation language (DML)

• Destination APL/CMD/TRM/WST with literal
specified in presentation file

• IF DB-EXCEPTION statement

• USE FOR DB-EXCEPTION statement

• USE FOR DEAD-LOCK statement

• TRANSACTION management statement

562 Chapter 16. Distributed Development Support Functions

When the TRANSACTION management statement is executed,
the syntax is analyzed, but no object is produced.

Linking a GS Program

Whenever a debugger is used, specify linkage option:

/DEBUG (Specify to use debugger.) and
/DEBUGTYPE{COFF|BOTH}(32), /CO(16)

Executing a GS Program

To execute the executable file of a GS program, use the COBOL85
debugger. If the file is executed without the debugger, a message
is written indicating GS-specific functions cannot be executed,
and the program is forcibly terminated.

To execute a GS program with the debugger:

1. Activate the debugger. Refer to the “Fujitsu COBOL
Debugging Guide” for additional information. The COBOL85
Debugger window is displayed.

Chapter 16. Distributed Development Support Functions 563

Figure 138. The COBOL85 Debugger window

564 Chapter 16. Distributed Development Support Functions

2. Select Start Debugging from the File menu to open the Start
Debugging dialog box. Specify the required setup items.

Figure 139. The Start Debugging dialog box, Application tab selected

Set the application name in the Application edit box.

Chapter 16. Distributed Development Support Functions 565

 Figure 140. The Start Debugging dialog box, Source tab selected

Set the Subschema descriptor file storage folder (directory) in
the Subschema descriptor file storage folders edit box.

3. Click on the OK button. The program is executed, then the
debugger screen is displayed.

4. The debugger automatically suspends program execution
when a statement using a GS-specific function is executed. It
displays the Data Name List dialog box that shows the data
names related to the network database function and
presentation file function (selected when the program is
executed). You can confirm the content of the data or open it
by selecting the data name and clicking on the
Display/Modify button. The Data dialog box opens and you
can change the data if necessary.

5. Close the Data dialog box at the completion of data setup,
then resume program execution.

566 Chapter 16. Distributed Development Support Functions

Figure 141. Windows at completion of data setup

READY Statement

If the READY statement is not specified in a program and
EXTERNAL is not specified in the subschema name paragraph,
FCOM and UWA are defined as item names only, and no areas
are allocated. If the program is executed in this condition (areas
not allocated), operation is not guaranteed.

To execute the program normally, specify linkage section
allocation in the debugger for the 01-level items of FCOM and
UWA. The debugger allocates FCOM and UWA areas when
linkage section allocation is executed. Consequently, the program

Chapter 16. Distributed Development Support Functions 567

can be executed in the same manner as when the READY
statement is specified.

USE Statement Execution

The USE procedure is used for branching processing if an error
occurs in a system for processing the presentation file or network
database function called by the application. This system cannot
branch processing to the USE procedure during execution
because it has no system for processing the presentation file or
network database function.

To execute the USE procedure, specify a breakpoint to suspend
execution. Then, use the debugger move to execution start point
function to move the execution start point to the first instruction
of the USE procedure to resume execution.

Executing the Presentation File Function

To execute the presentation file function, assign a dummy file
name (non-existent file name) to the file identifier specified in the
ASSIGN clause of the file control entry.

AT END Specification

No actual input target file or database exists for statements with
AT END specified. Consequently, AT END conditions are not
produced and processing never branches to a statement at the
AT END destination.

To execute a statement at the AT END destination, specify a
breakpoint for the first-executed statement for NOT AT END,
then use the debugger move to execution start point function to
move the execution start point to the first-executed statement at
the AT END destination to resume execution.

Data Name List Display

Fillers are not displayed.

568 Chapter 16. Distributed Development Support Functions

GS-Specific Functions that Cannot be Used

The USE IN TRANSACTION statement cannot be used.

Executing the USE IN TRANSACTION statement results in a
USE statement specification error and TRANSACTION statement
specification error.

Presentation File Module Test Function

The presentation file module test function executes a module test
during distributed development with the GS-series system. A
module test is executed for an application program which
performs interactive processing using the presentation file
function on this system.

For more information about how to use this function, refer to the
“OSIV AP/EF User’s Guide (Application Program).”

Operating Environment

This section shows the operating environment for executing the
presentation file module test function.

The FORM-created screen descriptor and FORM RTS are
required for using the presentation file module test function.

Chapter 16. Distributed Development Support Functions 569

Figure 142. The operating environment for executing the presentation file
module test function

Creating Files Required for Using the Presentation File
Module Test Function

The following files are required for using the presentation file
module test function:

• A screen descriptor that defined the initial screen

• Other screen and form descriptors required

570 Chapter 16. Distributed Development Support Functions

• Executable file in DLL format

• Window information file for the screen descriptor of the
initial screen

• Other window and printer information files required

• Environment file

Before executing the presentation file module test function, take
the following steps to create the required files:

1. Design an initial screen and creating screen and form
descriptors

2. Create a COBOL source program

3. Compile and linking a program

4. Create window and printer information files

5. Create an environment file

Designing an Initial Screen and Creating Screen and Form
Descriptors

The presentation file module test function performs all
interactive processing through screens.

Before using the function, determine the correspondence
between screens and programs and the hierarchical structure of
the screens (screen transition).

To design the initial screen, use FORM to create a screen
descriptor of the initial screen. Create more screen and form
descriptors if they are required for application programs. For
how to use FORM, refer to the “FORM V1.3 Manual.”

To split a screen, define a split procedure.

To define a split procedure, select split procedure definition
during creation of the screen descriptor.

Chapter 16. Distributed Development Support Functions 571

Split procedure definition defines operation according to input
data (field input value or attention type) for any data item of the
screen descriptor. For details on the split procedure, refer to the
“FORM V1.3 Manual.”

 Creating a COBOL Source Program

Use the editor to create a COBOL source program.

A knowledge of COBOL85 and presentation file interface is
required for creating a COBOL source program. For details, refer
to the “COBOL Reference Manual,” “FORM V1.3 Manual,” and
the FORM RTS online help.

Compiling and Linking a Program

See “Distributed Development Support Functions” for the
procedure for compiling and linking a program. The program to
be used with the presentation file module test function must be
created in DLL format.

Creating a Window and Printer Information Files

The presentation file module test function needs the window
information file for the initial screen. If screens and forms are to
be used with application programs, create the additional window
information files and printer information files. For the file
creation method, refer to the FORM RTS online help.

Creating an Environment File

An environment file contains the start options of the presentation
file module test function. An environment file can be created by
using the COBPRTST dialog box or the editor.

572 Chapter 16. Distributed Development Support Functions

The following example represents a diagram of the coding
format for creating an environment file with the editor.

1. [START] -> Screen-and-form-descriptors-name ‘START’
2. CBRNAME=D:\COBOL\COBOL85.CBR -> Initialization-file-name (full-path-name)
3. ICONNAME=D:\ICON\TEST.DLL -> Icon-DLL-name (full-path-name)
4. ICONID=1 -> Icon-resource-ID
5. DSPNAME=D:\SCREEN\DSPFILE -> Window-information-file-name (full-path-name)
6. ENDKEY=F001 -> Attention-value of the END-key
7. RETKEY=F002 -> Attention-value of the RETURN-key

1. [section name]
The section name identifies screens operating with the
presentation file module test function. Specify a screen
descriptor name of the initial screen.

2. CBRNAME (COBOL initialization file name)
If a COBOL application program is to be started, specify the
initialization file name (COBOL85.CBR) for COBOL
execution.

3. ICONNAME (icon DLL name)
Specify ICONNAME to change the icon of the presentation
file module test function. The full path name of the icon DLL
module file must be specified.

4. ICONID (icon resource ID)
Specify a number as an ID for the icon resource stored in the
icon DLL module. The default value is 1.

5. DSPNAME (window information file name)
Specify the window information file name to change the
environment information of the screen descriptor.

6. ENDKEY (END key value)
To change the END key value, specify the item literal value
specified in the attention definition of the screen descriptor.
The default is F002 (F2 key).

7. RETKEY (RETURN key value)
To change the RETURN key value, specify the item literal
value specified in the attention definition of the screen
descriptor. The default is F003 (F3 key).

Chapter 16. Distributed Development Support Functions 573

Using the Presentation File Module Test Function

A program execution method is determined by the destination of
the presentation file.

The following are presentation file destinations:

• PRT or DSP

• ACM, APL, TRM, CMD, or WST

With destination PRT or DSP, processing can be performed only
by the presentation file module test function. A module test can
be executed by directly starting the COBPRTST dialog box.
Processing can also be done by using the COBOL85 interactive
debugger.

With the other destinations, a function specific to GS-host is
used. The COBOL85 interactive debugger is required to assist in
processing. In this case, activate the COBOL85 interactive
debugger then the COBPRTST dialog box. Execute a test while
rewriting data items or record contents according to the test
types.

The following sections explain procedures for processing using
the presentation file module test function.

Note: When the display file unit test function is used, add the
directory where FORM RTS is stored to the environmental
variable PATH.

Activating the COBPRTST Dialog Box

If the presentation file is destined for PRT or DSP, activate the
COBPRTST dialog box. This section explains the procedure for
using the COBPRTST dialog box.

574 Chapter 16. Distributed Development Support Functions

 How to Activate the COBPRTST Dialog Box

Use the COBPRTST command to execute a presentation file
module test. The COBPRTST dialog box can be activated as
follows:

• Customize the COBPRTST command in the
PROGRAMMING-STAFF Utility menu, and select it from the
drop-down menu to start.

Windows 95 or Windows NT:

Execute COBPRTST.EXE.

Windows 3.1:

• Select COBPRTST.EXE in the File Manager directory window.

• Define COBPRTST.EXE as a program icon in Program
Manager, then double-click on the icon.

• Select the Run command from the Program Manager menu or
File Manager and enter the COBPRTST command in
command form.

Specifying an Activation Name

Specify the screen descriptor name of the initial screen in the
Invocation Name text box of the COBPRTST dialog box. See
“Using the COBPRTST Dialog Box.”

Specifying an Environment File Name

Specify an environment file name in the Environment File text
box of the COBPRTST dialog box. To create a new environment
file, specify the name of a non-existent file.

Changing Environment File Contents

To change environment file contents, specify the environment file
name, then click on the Update button. The COBPRTST-Update

Chapter 16. Distributed Development Support Functions 575

dialog box is displayed. Change environment file contents. See
“Using the COBPRTST-Update Dialog Box.”

Starting a Presentation File Module Test

Click on the OK button at completion of input to the COBPRTST
dialog box. The presentation file module test is executed.

Quitting a Presentation File Module Test

Click on the Cancel button.

Using the COBOL85 Interactive Debugger

If a presentation file is used with a function specific to GS-host
and is destined for ACM, APL, TRM, CMD, or WST, the
COBOL85 interactive debugger is required to assist in
processing.

If the file is executed without the debugger, a message is
outputted indicating host-specific functions cannot be executed
under this system. The program is forcibly terminated.

This section explains how to start processing with the COBOL85
interactive debugger.

Activating the COBOL85 Interactive Debugger

Select WINSVD from the Tools menu of the P-STAFF window.
Refer to the “Fujitsu COBOL Debugging Guide” for additional
details.

576 Chapter 16. Distributed Development Support Functions

Debugging

Open the Start Debugging dialog box. To use the presentation
file module test function, specify the following:

Application COBPRTST.EXE
Start program SAMPLE

COBPRTST.EXE

The command to execute the presentation file module test.

SAMPLE

The program name of the DLL form which starts in the
presentation file module test.

Activating the COBPRTST Dialog Box from the COBOL85 Debugger

Click on the OK button in the Start Debugging dialog box.
Specify the required setup items when the COBPRTST dialog box
is displayed. See “Activating the COBPRTST Dialog Box.” See
also “Presentation File Module Test Dialog Boxes.”

Operation Using the COBOL85 Interactive Debugger

Specify a breakpoint with the debugger, then execute the
program while manipulating data contents. See “Executing a GS
Program.” If a run-time message is written during execution of
the presentation file module test function, refer to the help
information. (Select Help in the COBPRTST dialog box.)

COBPRTST Dialog Box

This section explains how to use the COBPRTST dialog box and
COBPRTST-Update dialog box that are used with the
presentation file module test function.

Chapter 16. Distributed Development Support Functions 577

Using the COBPRTST Dialog Box

Use the COBPRTST dialog box to specify information for a
presentation file module test. The following figure shows the
COBPRTST dialog box.

Figure 143. The COBPRTST dialog box

The COBPRTST dialog box contains the following elements:

Starting Name edit box

Specify the screen descriptor name of the initial screen.

File edit box

Specify the environment file name which enables the start
option. An environment file is created by the file name
specified here.

Browse button

Click to browse available files.

Update button

578 Chapter 16. Distributed Development Support Functions

Click to update or change information on an environment
file. When you select this button, the COBPRTST-Update
dialog box is displayed.

OK button

Click to begin the presentation file module test.

Cancel button

Click to interrupt or quit the presentation file module test.

Help button

Click to access the presentation file module test function
online help.

Using the COBPRTST-Update Dialog Box

To change environment file information, use the COBPRTST-
Update dialog box. To display this dialog box, click on the
Update button in the COBPRTST dialog box. The following
figure shows the COBPRTST-Update dialog box.

Chapter 16. Distributed Development Support Functions 579

Figure 144. The COBPRTST-Update dialog box

580 Chapter 16. Distributed Development Support Functions

The COBPRTST-Update dialog box contains the following
elements:

Option List

Displays the options which can be specified. Change options
by clicking on the name of the option.

Option Contents edit box

Displays the values set for a selected option.

Browse button

Click to browse available files.

Change button

Click to change data in the Option Contents edit box for the
selected option.

OK button

Click to change the execution environment and return to the
presentation file module test dialog.

Cancel button

Click to return to the presentation file module test dialog
without changing the execution environment.

Help button

Click to access the presentation file module test function
online help.

Appendix A. Compiler Options

This appendix explains the COBOL85 compiler options.

The first section lists compiler options. Review the list to verify
the compiler option to be specified, then specify the option in the
compiler option format as shown in the second section.

List of Compiler Options

This section lists compiler options. The numbers in the compiler
option list correspond to the numbers of the compiler option
specification formats in the second section.

Options that relate to compile time resources Compiler option Number
Specifies the directory of a subschema AIMLIB 1
definition file. (16)
Specifies the extension of a file containing the file FILEEXT

10
descriptor.
Specifies the directory name of a file containing the FILELIB

11
file descriptor.
Specifies the extension of the screen and form FORMEXT 14
descriptor file.
Specifies the directory name of a file containing the FORMLIB 15
screen and form descriptor.
Specifies the directory name of the libraries. LIB 18

582 Appendix A. Compiler Options

Options that relate to compile listings Compiler option Number
Determines whether to output a message indicating CONF

5
incompatibility between the old and new standards.
Displays library text. COPY 6
Specifies the level of a diagnostic message. FLAG 12
Displays FCOM and UWA. GEN 16
Specifies the number of lines in a page of a LINECOUNT 19
compiler listings.
Specifies the number of characters on a line of a LINESIZE 20
compiler listings.
Determines whether to output the option MESSAGE 22
information listing
and compile unit statistical information listing.
Specifies the sequence number area of a source NUMBER 26
program.
Determines whether to output compiler listings PRINT 29
and specifies the output destination
of each compiler listing.
Determines whether to output a source SOURCE 33
program listing.

Options that relate to source program interpretation Compiler option Number
Determines how to treat the user-defined words of ALPHAL 2
lowercase letters in the source program.
Determines how to treat binary items. BINARY 3
Determines how to treat currency symbols. CURRENCY 7
Determines whether to display a message FLAGSW 13
for the language elements in COBOL syntax.
Specifies the ANSI COBOL standard. LANGLVL 17
Specifies a character set of national NCW 24
user-defined words.
Determines how to treat the national spaces NSPCOMP 25
and ANK spaces.
Determines how to treat the QUOTE figurative QUOTE/APOST 30
constant.
Specifies the type of the reserved words. RSV 31
Selection of sign adjustment for signed SDS 32
decimal items.

Appendix A. Compiler Options 583

Specifies the type of program formats. SRF 34
Specifies the collating sequence of alphanumeric STD1 37
characters.
Specifies a tab interval. TAB 38
Compares the signed external decimal item with an ZWB 42
alphanumeric item.

Options that relate to object program generating Compiler option Number
Specifies a method of calling the specified DLOAD 8
subprogram with the CALL "literal".
Specifies a COBOL source program as a main MAIN 21
program or subprogram.
Specifies operation with the ACCEPT statement. MODE 23
Determines whether to output the object programs. OBJECT 27
Determines whether to create a globally optimized OPTIMIZE 28
object programs.

Options that relate to run-time control Compiler option Number
Specifies a method of processing data having EQUALS 9
the same key
in the SORT statement.
Selection of column truncation. TRUNC 41

Options that relate to run-time resources Compiler option Number
Specifies the input destination of data specified SSIN

35
in the ACCEPT statement.
Specifies the output destination of data specified in SSOUT 36
the DISPLAY statement.

Options that relate to debugging function Compiler option Number
Determines whether to use the CHECK function. CHECK 4
Determines whether to use the interactive debugger. TEST 39
Determines whether to use the TRACE function. TRACE 40

584 Appendix A. Compiler Options

Compiler Option Specification Formats

This section explains the compiler option specification formats.

The compiler options are listed in alphabetical order.

There are three methods of specifying a compiler option:

1. Using the Compiler Options dialog box

2. Using the -WC command option

3. Using the compiler directing statement (@OPTIONS) in the
source program. (Priority: 3-2-1)

If a compiler option is specified in the compiler directing
statement of the source program, some separately compiled
programs may not be specified depending on the specification of
the compiler option.

Symbols shown with compiler option specification formats are:

• WINCOB

The compiler option can be specified on the WINCOB
compiler option specification screen (option file).

• -WC

The compiler option can be specified in the -WC command
option.

• @

The compiler option can be specified in the compiler directing
statement.

• (F)

The compiler option can be specified if the directory name is
omitted.

Appendix A. Compiler Options 585

Specify the absolute path name or relative path name for a
directory name and file name. If a relative path name is specified,
the directory name of the source file to be compiled is prefixed.
When compiling from WINCOB, the source file to be compiled
will be stored in the current directory.

The compiler options that specify a directory name cannot be
specified in the -WC command option.

1 (16) WINCOB

AIMLIB(directory-name[;directory-name])
Specify the directory of the subschema definition file that is
specified in the SUBSCHEMA-NAME paragraph.

If a subschema definition file exists in more than one directory,
specify the directory names separating them by a semicolon. The
directories are searched for in the order they were specified.

If the option is specified in duplicate, the directory search
sequence is as follows:

1. Directories specified in the -A option

2. Directories specified in the compiler option AIMLIB

2 WINCOB,-WC,@

ALPHAL

NOALPHAL
Specify ALPHAL to treat user-defined words with lowercase
letters in the source program as uppercase letters. Otherwise,
specify NOALPHAL.

ALPHAL treats character constants as follows:

586 Appendix A. Compiler Options

Program name constant: Uppercase and lowercase letters are
treated as uppercase letters.

Constants other than program name: Constants are treated as
written.

The constant specified for a program called by a statement is
included as written in the program name constant.

3 WINCOB,-WC,@

 WORD[, MLBON]

BINARY(MLBOFF)
 BYTE
BINARY(WORD) assigns the elementary item of binary data to
an area length of 2, 4, or 8 words; BINARY(BYTE) assigns the
elementary item of binary data to an area length of 1 to 8 bytes.

The area length is determined by the number of PIC digits. How
to treat the high order end bit of an unsigned binary item can
also be specified.

• BINARY(WORD,MLBON): The high order end bit is treated
as a sign.

• BINARY(WORD,MLBOFF): The high order end bit is treated
as a numeric value.

If BINARY(BYTE) is specified, the high order end bit is treated as
a numeric value.

The following table shows the relationship between the number
of declared digits and the area length.

Appendix A. Compiler Options 587

Table 64. Length of Assigned Area from Number of PIC Digits

Number of PIC Digits Assigned Area Length
Signed Unsigned BINARY(BYTE) BINARY(WORD)

1 - 2 1 - 2 1 2
3 - 4 3 - 4 2 2
5 - 6 5 - 7 3 4
7 - 9 8 - 9 4 4

10 - 11 10 - 12 5 8
12 - 14 13 - 14 6 8
15 - 16 15 - 16 7 8
17 - 18 17 - 18 8 8

4 WINCOB,-WC,@

CHECK[(n)]

NOCHECK

To use the CHECK function, specify CHECK; otherwise, specify
NOCHECK.

n indicates the number of times a message is displayed. Specify n
with an integer 0 to 999,999. The default value is 1.

While the CHECK function is in use, program processing
continues until a message is displayed up to n times. However,
the program may fail to operate as expected if an error occurs
(for example, area destruction). If 0 is specified for n, program
processing continues regardless of the number of times a
message is displayed.

If CHECK is specified, the above check processing is
incorporated into the object program. Consequently, execution
performance is decreased. When the debugging function
terminates, specify NOCHECK, then recompile the program.

Refer to “Using the CHECK Function” in the “Fujitsu COBOL
Debugging Guide” for more information.

588 Appendix A. Compiler Options

5 WINCOB,-WC,@

 68

CONF([74])

 OBS

NOCONF

Specify CONF to indicate incompatibility between the old and
new COBOL standards; otherwise, specify NOCONF. If CONF is
specified, an incompatible item is indicated by I-level diagnostic
messages.

• CONF(68): Indicate items that is interpreted differently
between '68 ANSI COBOL and '85 ANSI COBOL.

• CONF(74): Indicate items that is interpreted differently
between '74 ANSI COBOL and '85 ANSI COBOL.

• CONF(OBS): Indicates obsolete language elements and
functions.

The compiler options CONF(68) and CONF(74) are effective only
if the compiler option LANGLVL(85) is specified.

CONF is effective when a program created according to the
existing standard is changed to '85 ANSI COBOL.

Appendix A. Compiler Options 589

6 WINCOB,-WC,@

COPY

NOCOPY

To display library text incorporated by the COPY statement in
the source program listing, specify COPY; otherwise, specify
NOCOPY.

COPY is only effective when the compiler option SOURCE is
specified.

7 WINCOB,-WC,@

 $
CURRENCY()

 currency-symbol

Specify CURRENCY($) to use $ for a character used as a currency
symbol; specify CURRENCY(currency-symbol) to use another
symbol. If CURRENCY(currency-symbol) is specified, refer to the
CURRENCY SIGN clause explained in the “COBOL85 Reference
Manual” for the currency symbols that can be used.

8 WINCOB,-WC,@

DLOAD

NODLOAD
To dynamically call the subprogram specified with the CALL
"literal", specify DLOAD; otherwise, specify NODLOAD.

Refer to “Linkage Types and Program Structure” in Chapter 4.

590 Appendix A. Compiler Options

9 WINCOB,-WC,@

EQUALS

NOEQUALS

If records having the same key are input by a SORT statement,
specify EQUALS to ensure that the record sequential at output of
the SORT statement is identical to the record sequential at
inputted. Otherwise, specify NOEQUALS.

If NOEQUALS is specified, the sequence of records having the
same key is not defined when the SORT statement outputs
records.

If EQUALS is specified, special processing to ensure the input
sequence is done sorting operation. Consequently, execution
performance decreases.

10 WINCOB

FILEEXT(extension)
Specify the extension of a file containing the file descriptor. Any
character string can be specified as the extension. If a file name
has no extension, specify character string "None" as the
extension. Do not specify more than one extension.

The following is the priority if the option is specified in duplicate:

1. Compiler option FILEEXT

2. FFD_SUFFIX environment variable (32)

3. Default value (FFD)

Appendix A. Compiler Options 591

11 WINCOB

FILELIB(directory-name[;directory-name]...)
If the COPY statement with IN/OF XFDLIB specified is used to
fetch a record descriptor from a file descriptor, specify the
directory of the file containing the file descriptor.

If a file containing the file descriptor exists in more than one
directory, specify the directory names separated by a semicolon.
The directories are searched for in the order specified.

Specify directory-name + file-descriptor-name within 79 bytes.
(16)

Specify directory-name + file-descriptor-name within 126 bytes.
(32)

If the option is specified in duplicate, the directory search
sequence is as follows:

1. Directories specified in the -f option

2. Directories specified in the compiler option FILELIB

3. Directories specified in the FILELIB environment variable (32)

592 Appendix A. Compiler Options

12 WINCOB,-WC,@

I
FLAG(W)
 E

Specify the diagnostic messages to be displayed.

• FLAG(I): Displays all diagnostic messages.

• FLAG(W): Displays diagnostic messages of only W-level or
higher.

• FLAG(E): Displays diagnostic messages of only E-level or
higher.

The diagnostic message specified in the compiler option CONF is
displayed regardless of the FLAG specification.

13 WINCOB,-WC,@

STDM
 [STDI] [,RPW]
 FLAGSW (STDH)

 SIA

NOFLAGSW

To display a message indicating a language construct in COBOL
syntax, specify FLAGSW; otherwise, specify NOFLAGSW.

The following are language constructs that can be indicated:

• FLAGSW(STDM): Language elements that are not in the
minimum subset of the standard COBOL

Appendix A. Compiler Options 593

• FLAGSW(STDI): Language elements that are not in the
intermediate subset of the standard COBOL

• FLAGSW(STDH): Language elements that are not in the high
subset of the standard COBOL

• FLAGSW(RPW): Language elements of the report writer
function of the standard COBOL

• FLAGSW(SIA): Language elements that are not in the range
of Fujitsu System Integrated Architecture (SIA)

Use FLAGSW(SIA) to create a program that will operate under
another system.

14 WINCOB

FORMEXT(extent)
Specify the extent of the screen and form descriptor file. Any
character string can be specified as the extent. If a file name has
no extent, specify character string "None" as the extent. Do not
specify more than one extent.

The following is the priority if the option is specified in duplicate:

1. Compiler option FORMEXT

2. SMED_SUFFIX environment variable (32)

3. Default value (PMD)

594 Appendix A. Compiler Options

15 WINCOB

FORMLIB(directory-name[;directory-name]...)
If the COPY statement with IN/OF XMDLIB specified is used to
fetch a record definition from the screen and form descriptor,
specify the directory of the screen and form descriptor file.
If the screen and form descriptor files exist in more than one
directory, specify the directory names separated by a semicolon.
The directories are searched for in the order specified.

Specify directory-name + screen-and-form-descriptor-name
within 79 bytes. (16)

Specify directory-name + screen-and-form-descriptor-name
within 126 bytes. (32)

If the option is specified in duplicate, the directory search
sequence is as follows:

1. Directories specified in the -m option

2. Directories specified in the compiler option FORMLIB

3. Directories specified in the FORMLIB environment variable
(32)

16 WINCOB,-WC,@

GEN

NOGEN

Specify GEN to display the communication area with AIM DBMS
(FCOM) and the AIM expansion record area (UWA) in the source
program listing. Otherwise, specify NOGEN.

Appendix A. Compiler Options 595

17 WINCOB,-WC,@

 85
LANGLVL (74)

 68

Specify a standard for an item where source program
interpretation is different between the old and new COBOL
standards.

• LANGLVL(85): '85 ANSI COBOL

• LANGLVL(74): '74 ANSI COBOL

• LANGLVL(68): '68 ANSI COBOL

18 WINCOB

LIB(directory-name[;directory-name]...)
If the source text manipulation function (COPY statement) is
used, specify the directory of libraries. If libraries exist in more
than one directory, specify the directory names separated by a
semicolon. The directories are searched for in the order specified.

The following is the priority if the option is specified in duplicate:

1. -I option

2. Compiler option LIB

596 Appendix A. Compiler Options

19 WINCOB,-WC,@

LINECOUNT(n)
Specify the number of lines in a page of a compiler listing. n can
be specified with an integer of up to 3 digits. The default value is
60.

If a value 0 to 12 is specified, display without editing.

20 WINCOB,-WC,@

LINESIZE(n)
Specify the maximum number of characters (value resulting from
conversion of alphanumeric characters displayed in the list) for a
line in a compiler listing. Value can be specified with 80, or a 3-
digit integer more than 120. The default value is 136.

The source program list, option information list, and diagnosis
message list are output with a fixed number (120) of characters
regardless of the maximum number of characters specified in
LINESIZE.

The permitted maximum number of characters is 136. If a value
greater than 136 is specified in LINESIZE, 136 is used.

21 WINCOB,-WC,@

MAIN

NOMAIN

Specify MAIN to use a COBOL source program as a main
program; specify NOMAIN to use a COBOL source program as a
subprogram.

Appendix A. Compiler Options 597

Specify MAIN for the COBOL source program to be used as a
main program. If compiling the COBOL programs by
Continuous Compilation mode or in a project, click on the Main
Program button.

22 WINCOB,-WC,@

MESSAGE

NOMESSAGE

To output an option information listing and to compile unit
statistical information listing, specify MESSAGE; otherwise,
specify NOMESSAGE.

23 WINCOB,-WC,@

 STD
MODE ()

 CCVS

If an ACCEPT statement where a numeric item is specified as the
receiving item in the format of "ACCEPT unique-name[FROM
mnemonic-name]" is executed, specify MODE(STD) to move a
right-justified numeric data to a receiving item.

Specify MODE(CCVS) to move a left-justified character string to
a receiving item:

If MODE(CCVS) is specified, only an external decimal item can
be specified as a receiving item in the ACCEPT statement.

598 Appendix A. Compiler Options

24 WINCOB,-WC,@

STD
NCW ()

SYS

Specify this option for a national character set that can be defined
as user-defined words. Specify NCW(STD) to use the national
character set as a national character set common to systems;
specify NCW(SYS) to use the national character set as a national
character set of the computer. The following are national
character sets that can be used:

NCW(STD):

NCW(SYS):

− Character set with STD specified

− Extended character

− JIS Level non-kanji (1)

− Extended non-kanji

− User-defined characters

Appendix A. Compiler Options 599

(1) The following characters cannot be used.

25 WINCOB,-WC,@

 NSP
NSPCOMP()

 ASP

Specify this option to determine how to treat a national space at
comparison. Specify NSPCOMP(NSP) to treat the national space
as a national space; specify NSPCOMP(ASP) to treat the national
space as an ANK space.

A national space treated as an ANK space is assumed to be
equivalent to a 2-byte ANK space.

NSPCOMP(ASP) is effective for the following comparisons:

• National character comparison with a national item as an
operand

• Character comparison with a group item as an operand

NSPCOMP(ASP) is not effective for the following comparisons:

• Comparison between group items that do not include any
national item

• Comparison between group items including an item whose
attribute does not specify explicit or implicit display

600 Appendix A. Compiler Options

A national space is not treated as an ANK space for the following
comparison even if the NSPCOMP(ASP) option is specified:

Character comparison and national character comparison
done by using the INSPECT, STRING, or UNSTRING
statement or by operating the indexed file key.

If NSPCOMP(ASP) is specified, an ANK space is treated as a
national space under the class condition JAPANESE.

A national space is equivalent to a 2-byte ANK space in the host
code system whereas it is not in the Windows code system. Thus,
specify NSPCOMP(ASP) for a COBOL program which has been
used with a host to operate under this system.

26 WINCOB,-WC,@

NUMBER

NONUMBER

Specify this option to determine the value used as the line
number in line information. The line information identifies each
line of a source program within lists generated at compile time or
run-time. Specify NUMBER to use the value of the sequence
number area of the source program; specify NONUMBER to use
the value generated by the compiler.

NUMBER: If the sequence number area includes a nonnumeric
character or if the sequence number is not in ascending order, the
line number is changed to the previously correct sequence
number + 1.

NONUMBER: Line numbers are assigned in ascending order
starting from 1. The increment between successive line numbers
is 1.

Appendix A. Compiler Options 601

If NUMBER is specified, a sequence number including identical
values consecutively is not regarded as an error.

If NUMBER is specified, the error search function cannot be
used.

27 WINCOB,-WC(D)

OBJECT[(directory-name)]

NOOBJECT

Specify OBJECT to generate an object program; otherwise,
specify NOOBJECT. If an object program is outputted, the file is
usually created in the directory of the source program. To create
the file in another directory, specify the directory name.

Refer to “Resources Necessary for Compilation” in Chapter 3.

28 WINCOB,-WC,@

OPTIMIZE

NOOPTIMIZE
Specify OPTIMIZE to generate a global-optimized object
program; otherwise, specify NOOPTIMIZE.

If this option is specified with TEST, OPTIMIZE is displayed as
the options established. The program, however, is compiled on
the assumption that NOOPTIMIZE is specified. (No global
optimization)

See Appendix C, “Global Optimization.”

602 Appendix A. Compiler Options

29 WINCOB

PRINT[(directory-name)]
Specify this option to generate a compiler listing. If a compiler
listing is output, the file is usually created in the directory of the
source program. To create the file in another directory, specify
the directory name.

30 WINCOB,-WC,@

QUOTE

APOST

Specify QUOTE to use quotation marks as the values of the
QUOTE and QUOTES figurative constants; specify APOST to use
apostrophes as the values.

Either quotation marks or apostrophes can be used as delimiter
of nonnumeric literal in source programs regardless of the
specification of this option. The right and left side delimiters
must be identical.

31 WINCOB,-WC,@

 ALL
 V111
 V112

RSV (V122)
 V125
 VSR2
 VSR3
Specify the type of a reserved word. The following are the names
of reserved-word sets:

Appendix A. Compiler Options 603

• RSV(ALL): For COBOL85 V20 or later

• RSV(V111): For GS series COBOL85 V11L11

• RSV(V112): For GS series COBOL85 V11L20

• RSV(V122): For GS series COBOL85 V12L20

• RSV(V125): For COBOL85 V12L50

• RSV(VSR2): For VS COBOL II REL2.0

• RSV(VSR3): For VS COBOL II REL3.0

32 WINCOB,-WC,@

SDS

NOSDS
Specify this option to determine how to move a signed internal
decimal item to another signed internal decimal item. Specify
SDS to move the sign of the sending item as is; specify NOSDS to
move a converted sign. X'B' and X'D' are treated as minus signs.

The other values are treated as plus signs. A plus sign of the
sending item is converted to X'C'; a minus sign of the sending
item is converted to X'D'.

33 WINCOB,-WC,@

SOURCE

NOSOURCE

Specify SOURCE to output a source program listing; otherwise,
specify NOSOURCE. If SOURCE is specified, the source program
listing is output to the directory specified in the compiler option
PRINT or the -dp option.

604 Appendix A. Compiler Options

A source program listing is generated only if this option is
specified with the compiler option PRINT or the -dp option.

34 WINCOB,-WC

 FIX FIX

SRF(FREE [, FREE])

 VAR VAR

Specify the reference formats of a COBOL source program and
library. Specify FIX for the fixed-length format; specify FREE for
the free format, specify VAR for the variable-length format.

Specify the reference format of COBOL source program, then
specify that of the library. If the two reference formats are the
same, there is no need to specify the library program format.

35 WINCOB,-WC,@

run-time environment information name
SSIN ()

SYSIN

Specifies the data input destination of the ACCEPT statement for
ACCEPT/DISPLAY function.

• SSIN(run-time environment information name): A file is
used as the data input destination. At run-time, specify the
path name of the run-time environment information name.

• SSIN(SYSIN): The console window is used as the data input
destination.

The run-time environment information name can be specified
with up to eight uppercase letters and numeric characters
beginning with an uppercase letter (A to Z).

Appendix A. Compiler Options 605

The run-time environment information name must be unique.
The name must be different from a run-time environment
information name (file-identifier) used with another file.

Refer to “ACCEPT/DISPLAY Function” in Chapter 11.

36 WINCOB,-WC,@

 run-time environment information name
SSOUT ()

 SYSOUT

Specifies the data output destination of the DISPLAY statement
for ACCEPT/DISPLAY function.

• SSOUT(run-time environment information name): A file is
used as the data output destination. At run-time, specify the
path name of the run-time environment information name.

• SSOUT(SYSOUT): The console window is used as the data
output destination.

The run-time environment information name can be specified
with up to 8 uppercase letters and numeric characters beginning
with an uppercase letter (A to Z).

The run-time environment information name must be unique.
The name must be different from a run-time environment
information name (file-identifier) used with another file.

Refer to “ACCEPT/DISPLAY Function” in Chapter 11.

606 Appendix A. Compiler Options

37 WINCOB,-WC,@

 ASCII
STD1 (JIS1)

 JIS2

To determine how to treat an alphanumeric code (standard code
of a 1 byte characters) specified for EBCDIC in the ALPHABET
clause, specify this option.

Specify ASCII to treat the alphanumeric code as an ASCII code;
specify JIS1 to treat it as a JIS 8-bit code; specify JIS2 to treat it as
a JIS 7-bit Roman character code.

EBCDIC is specified in the ALPHABET clause, the character code
system used depends on the specification of this option.

• STD1(ASCII): EBCDIC (ASCII)

• STD1(JIS1) : EBCDIC (kana)

• STD1(JIS2) : EBCDIC (lowercase letters)

38 WINCOB,-WC

 8
TAB ()

 4

Specifies whether tabs are to be set in units of 4 columns (TAB(4))
or 8 columns (TAB(8)).

Appendix A. Compiler Options 607

39 WINCOB,-WC(D),@(D)

TEST[(directory-name)]

NOTEST

To use a debugger, specify TEST; otherwise, specify NOTEST. If
TEST is specified, the debugging information file used with the
debugger is created in the directory of the source program. To
create the file in another directory, specify the directory name.

If this option is specified with OPTIMIZE, OPTIMIZE is
displayed as the options established. The program, however, is
compiled on the assumption that NOOPTIMIZE is specified (no
global optimization).

Refer to “Resources Necessary for Compilation” in Chapter 3,
and the “Fujitsu COBOL Debugging Guide”.

40 WINCOB,-WC,@

TRACE[(n)]

NOTRACE

To use the TRACE function, specify TRACE; otherwise, specify
NOTRACE.

n indicates the number of the trace information items to be
output. Specify n with an integer 1 to 999,999. The default value
is 200.

If TRACE is specified, processing for displaying trace
information is incorporated into the object program.
Consequently, execution performance decreases. When the

608 Appendix A. Compiler Options

debugging function terminates, specify NOTRACE, then
recompile the program.

Refer to “Using the TRACE Function” in the “Fujitsu COBOL
Debugging Guide”.

41 WINCOB,-WC,@

TRUNC

NOTRUNC

Specify a method of truncating high-order digits when a number
is moved with a binary item as a receiving item.

• TRUNC: The high-order digits of the result value are
truncated according to the specification of the PICTURE
clause of the receiving item. The result value after truncation
is stored in the receiving item.

If this option is specified with the compiler option
OPTIMIZE, the high-order digits of a variable moved from an
external decimal item or internal decimal item through
optimization are also truncated. Digits are truncated as
explained above only if the number of digits in the integer
part of the sending item is greater than that of the receiving
item.

• NOTRUNC: The execution speed of the object program is of
top priority. If the execution is faster without truncation than
with truncation, digits are not truncated.

For example, specification in the PICTURE clause:

• Moving S999VP (3 digits in the integer part) to S99V99 (2
digits in the integer part): Truncation

• Moving SPV999 (0 digit in the integer part) to S99V99 (2
digits in the integer part): No truncation

Appendix A. Compiler Options 609

If TRUNC is specified, the value to be set into the integer area of
the sending item depends on the hardware.

If NOTRUNC is specified, the program must be designed so that
a digit count exceeding the digit count specified in the PICTURE
clause is not stored in the receiving item even when no digit is
truncated.

If NOTRUNC is specified, whether to truncate digits depends on
the compiler. Thus, a program with no truncation is used by
specifying NOTRUNC may be incompatible with another
system.

42 WINCOB,-WC,@

ZWB

NOZWB
Specify this option to determine how to treat a sign part when a
signed external decimal item is compared with an alphanumeric
field.

Specify ZWB for comparison ignoring the sign part of the
external decimal item; specify NOZWB for comparison including
the sign part.

Alphanumeric characters include alphanumeric data items,
alphabetic data items, alphanumeric edited data items, numeric
edited items, nonnumeric literals, and figurative constants other
than ZERO.

For example:

• 77 ED PIC S9(3) VALUE +123.

• 77 AN PIC X(3) VALUE "123".

610 Appendix A. Compiler Options

The conditional expression ED = AN is defined as shown below
in this example:

• With ZWB specified: True

• With NOZWB specified: False

Appendix B. I-O Status List

This appendix lists the meanings of the values (status values) set
when input-output statements are executed. The values are set in
a data name specified in the FILE STATUS clause of the file
control entry when input-output statements are executed.

Table 65. I-O Status List

Classification I-O
Status
Value

Detailed
Information

Meaning

Successful 00 -- Input-output statements were executed
successfully.

02 -- The status is one of the following:
- The value of the reference key of the record
read by executing the READ statement is the
same as that of the next record.
- The record having the same record key value
as the record written by executing the WRITE
or REWRITE statement already exists in a file.
This is not an error, however, because a record
key value may be duplicated.

612 Appendix B. I-O Status List

Table 65. I-O Status List (cont.)

Classification I-O
Status
Value

Detailed
Information

Meaning

 Successful 04 -- The length of an input record is greater than the
maximum record.

 FORM RTS One of the following status occurred in the
presentation file.
- An input error occurred in required full-field
input items or required input items.
- The data error occurred. (A national language
data error, an ANK data error, a numeric item
configuration data error, a numeric item sign
error, a numeric item decimal point error, a
redundancy check error)
- Data entered in the data item is invalid.

 ACM The input message is longer than the specified
maximum record.

05 -- One of the following status occurred in the file
where the OPTIONAL clause is specified.
- The OPEN statement in INPUT, I-O, or
EXTEND mode was executed for a file, but the
file has yet to be created.
- The OPEN statement in INPUT mode was
executed for a nonexistent file. In this case, the
file is not created and at end condition occurs
(input-output status value = 10) during
execution of the first READ statement.
- The OPEN statement in I-O or EXTEND mode
was executed for a nonexistent file. In this case,
the file is created.

07 -- Input-output statements were successfully
executed, however, the file referenced by one of
the following methods exists in a non-reel or
unit medium.
- OPEN statement or CLOSE statement with
 NO REWIND specified
- CLOSE statement with REEL/UNIT specified

0A ACM There was no message to be input to the
specified logical destination.

Appendix B. I-O Status List 613

Table 65. I-O Status List (cont.)

Classification I-O
Status
Value

Detailed
Information

Meaning

Successful 0B ACM The number of output messages exceeds the
maximum number of messages stored at the
specified logical destination.

AT END
condition

10 -- AT END condition occurred in a sequentially
accessed READ statement.
- File end reached.
- The first READ statement was executed for a
non-existent optional input file.
- That is, a file with the OPTIONAL clause
specified was opened in INPUT mode but the
file was not created.

14 AT END condition occurred in a sequentially
accessed READ statement.
- The valid digits of a read relative record
number are greater than the size of the relative
key item of the file.

Invalid key
condition

21 -- Record key order is invalid.
One of the following status occurred.
 - During sequential access, the prime record
key value was changed between the READ
statement and subsequent REWRITE statement.
- During random access or dynamic access of a
file with DUPLICATES specified as the prime
key, the prime record key value was changed
between the READ statement and subsequent
REWRITE or DELETE statement.
- During sequential access, prime record key
values are not in ascending order at WRITE
statement execution.

22 -- During WRITE or REWRITE statement
execution, the value of prime record key, or
alternate record key to be written already exist
in a file. However, DUPLICATES is specified in
the prime record key or alternate record key.

614 Appendix B. I-O Status List

Table 65. I-O Status List (cont.)

Classification I-O
Status
Value

Detailed
Information

Meaning

Invalid Key
Condition

23 -- The record was not found.
 - During START statement or random access
READ, REWRITE, or DELETE statement
execution, the record having the specified key
value does not exist in the file.
- Relative record number 0 was specified for a
relative file.

24 -- One of the following status occurred.
- Area shortage occurred during WRITE
statement execution.
- During WRITE statement execution, the
specified key is out of the key range.
- After overflow writing, an attempt was made
to execute the WRITE statement again.

Permanent
error condition

30 -- A physical error occurred.

ACM ACM detected error.
34 -- Area shortage occurred during WRITE

statement execution.
35 The OPEN statement in INPUT, I-O, or

EXTEND mode was executed for a file without
the OPTIONAL clause specification. The file has
yet to be created, however.

37 -- The specified function is not supported.
38 The OPEN statement was executed for a file for

which CLOSE LOCK was executed before.
Logical error
condition

39 -- During OPEN statement execution, a file whose
attribute conflicts with the one specified in the
program was assigned.

41 -- The OPEN statement was executed for an
opened file.

42 -- The CLOSE statement was executed for an
unopened file.

Appendix B. I-O Status List 615

Table 65. I-O Status List (cont.)

Classification I-O
Status
Value

Detailed
Information

Meaning

Logical Error
Condition

43 -- During sequential access or DELETE or
REWRITE statement execution for a file with
DUPLICATES specified as the prime key, the
preceding input-output statement was not a
successful READ statement.

44 -- One of the following status occurred.
- The record length during WRITE or
REWRITE statement execution is greater than
the maximum record length specified in the
program. Or, an invalid numeric was
specified as the record length.
- During REWRITE statement execution, the
record length is not equal to that of the record
to be rewritten.

46 -- During sequential call READ statement
execution, the file position indicator is
undefined due to one of the following reasons.
- The preceding START statement is
unsuccessful.
- The preceding READ statement is
unsuccessful (including at end condition).

47 -- The READ or START statement was executed
for a file not opened in INPUT or I-O mode.

48 -- The WRITE statement was executed for a file
not opened in OUTPUT, EXTEND (sequential,
relative, or indexed), or I-O (relative or
indexed) mode.

49 -- The REWRITE or DELETE statement was
executed for a file not opened in I-O mode.

616 Appendix B. I-O Status List

Table 65. I-O Status List (cont.)

Classification I-O
Status
Value

Detailed
Information

Meaning

Other errors 90 -- These errors are other than those previously
classified. The following conditions are
assumed.
1) File information is incomplete or invalid.
2) During OPEN or CLOSE statement
execution, an error occurred in a OPEN or
CLOSE function.
3) An attempt was made to execute an input-
output statement for a file where the CLOSE
statement was unsuccessful due to input-
output status value 90.
4) Resources such as main storage are
unavailable.
5) An attempt was made to execute the OPEN
statement for a file not closed correctly.
6) An attempt was made to write records after
an error occurred due to overflow writing.
7) An attempt was made to write records after a
no-space condition occurred.
8) An invalid character is contained in a text file
record.
9) Some characters cannot be interpreted from a
native code to the code set.
10) The lock table is full.
11) An error other than the above occurred.
This is the only information about input-output
operations where the error occurred.
12) A system error occurred.

 FORM RTS FORM RTS detected an error.
 ACM ACM detected an error.

91 -- - No file is assigned.
- At OPEN statement execution, a file
identification does not correspond to a physical
file name.

92 -- An exclusive error occurred. (RDM file)
93 -- An exclusive error occurred. (File lock)

Appendix B. I-O Status List 617

Table 65. I-O Status List (cont.)

Classification I-O
Status
Value

Detailed
Information

Meaning

Other Errors 99 -- An exclusive error occurred. (Record lock)
ACM A system error occurred.

9B ACM A destination error occurred.
9E FORM RTS The execution waiting by the READ statement

was compulsorily released.
9F ACM - A monitoring time error occurred.

- A destination error stopped processing.
9G ACM The number of messages at the logical

destination exceeds the specified maximum.
9H ACM A file area or storage became insufficient at the

logical destination.

'FORM RTS' in the Detail code column means a FORM RTS error
code. For details, refer to the FORM RTS online help.

618 Appendix B. I-O Status List

Appendix C. Global
Optimization

This appendix explains the global optimization performed by the
COBOL85 compiler.

Optimization

Global optimization divides the procedure division into sets of
statements (called basic blocks), each consisting of one entry, one
exit, and statements executable in physical sequence between the
entry and the exit. Control flow and data use status are then
analyzed, mainly in connection with loops (program parts to
execute repeatedly).

Specifically, the following operations occur during global
optimization:

• Removing common expressions

• Shifting an invariant

• Optimizing induction variables

• Optimizing PERFORM statements

• Integrating adjacent moves

• Eliminating unnecessary substitutions

620 Appendix C. Global Optimization

Removing a Common Expression

For arithmetic or conversion processing, if possible, the previous
results are reserved and used without additional execution of
arithmetic or conversion processing.

Example 1:

77 I PIC S99 BINARY.
77 J PIC S99 BINARY.
77 K PIC S99 BINARY.
01 REC-1

02 A0 OCCURS 25 TIMES.
03 A PIC XX OCCURS 10 TIMES.

02 B0 OCCURS 35 TIMES.
03 B PIC XX OCCURS 10 TIMES.
:

MOVE SPACE TO A (I,J). ... (1)
:

MOVE SPACE TO B (I,K). ... (2)

If I does not change in value between (1) and (2) in Example 1,
the address calculation formula for A(I,J) "A - 22 + I * 20 + J * 2"
and the address calculation formula for B(I,K) "B - 22 + I * 20 + K
* 2" will have "I * 20" in common.

Therefore, COBOL optimizes the latter to use the result of the
former. A is assumed to indicate the address A(1,1) here.

Appendix C. Global Optimization 621

Example 2:

77 Z1 PIC S9(9) DISPLAY.
77 Z2 PIC S9(9) DISPLAY.
77 B1 PIC S9(4) BINARY.
77 B2 PIC S9(4) BINARY.
 :
 COMPUTE Z1 = B1 * B2. ... (1)
 :
 COMPUTE Z2 = B1 * B2. ... (2)

In Example 2, B1 and B2 remain unchanged between (1) and (2),
B1 * B2 becomes common and (2) is optimized so it uses results
of (1).

Shifting an Invariant

For arithmetic or conversion processing done within a loop, the
processing can be performed outside the loop if the same results
would be obtained regardless of whether the processing is done
within or outside the loop.

Example 1:

77 I PIC S9(4) BINARY.
77 ZD PIC S9(7) DISPLAY.
01 REC-1.
 02 B1 PIC S9(7) BINARY OCCURS 20 TIMES.
 :
 MOVE 1 TO I.
LOOP-1 }
 IF B1(I) = ZD GO TO EXIT-1. }
 : } Loop
 ADD 1 TO I. }
 IF I IS <= 20 GO TO LOOP-1. }

If ZD never changes throughout the loop in Example 1, the
compiler shifts ZD-to-Binary conversion processing by the IF
statement to the outside of the loop.

622 Appendix C. Global Optimization

Optimizing an Induction Variable

If the compiler finds a loop containing a partial expression that
uses an item (induction item) defined recursively only by a
constant (as in ADD 1 TO I., for example) or by an item with an
unchanging value, it introduces a new induction variable and
changes the multiplication of the subscript calculation formula to
an addition.

Example 1:

77 I PIC S9(4) BINARY.
01 REC-1.
 02 A PIC X(10) OCCURS 20 TIMES.
 :
LOOP-1. }
 IF A(I) = (1) }
 : } Loop
 ADD 1 TO I. ...(2) }
 IF I IS <= 20 GO TO LOOP-1. ...(3) }

Because I is defined recursively by a constant within the loop in
Example 1, the compiler introduces a new induction variable to
replace the multiplication "I * 10" in the address calculation
formula for A(I) "A - 10 + I * 10" with “t”, and generates "ADD 10
TO t" after (2).

Furthermore, if I is not used anywhere else in the loop and,
concurrently, the value of I calculated inside the loop is not used
after control exits from the loop, the compiler replaces (3) with
"IF t IS <= 20 GO TO LOOP-1" and deletes (2).

Optimizing a PERFORM Statement

The compiler expands the PERFORM statement into some
instructions for saving, setting and restoring the return address
for the return mechanism. The exit of the PERFORM statement
transfers control to the other statement, generally. Otherwise,

Appendix C. Global Optimization 623

some of the machine instructions for the return mechanism turn
out to be redundant.

The compiler then removes these redundant machine
instructions.

Integrating Adjacent Moves

If different alphanumeric move statements transfer data from
contiguous items to identically contiguous items, the compiler
integrates these move statements into one.

Example 1:

02 A1 PIC X(32).
02 A2 PIC X(16).

 :
02 B1 PIC X(32).
02 B2 PIC X(16).
 :
MOVE A1 TO B1. ...(1)
 :
MOVE A2 TO B2. ...(2)

If A2 and B2 do not change between (1) and (2) and,
concurrently, B2 is not referenced in Example 1, the compiler
deletes MOVE statement (2). Then MOVE statement (1) sets A1
and A2, and B1 and B2, as one area, respectively, to perform a
move.

Eliminating Unnecessary Substitutions

Substitutions are eliminated for data items that are not going to
be either implicitly or explicitly referenced.

624 Appendix C. Global Optimization

Notes

If the compiler option OPTIMIZE is specified, the compiler
generates a globally optimized object program. For details, refer
to Appendix A, “Compiler Options.”

Notes on Global Optimization

The following explains notes on global optimization:

• Use of the linkage function

Some parameters for a called program share all or part of a
storage area (for example, CALL "SUBPROG" USING A, A.
or CALL "SUBPROG" USING A, B. where A and B share part
of the area).

If the content of the area is overwritten by the called
program, the optimization of the called program may not
lead to the expected result. So, do not specify the compiler
option OPTIMIZE for such a program.

• No execution of the global optimization

The compiler does not perform global optimization on the
following programs:

− Programs that do not define the items and index names
having the attributes to target by global optimization

− Programs using the segmentation function (segmentation
module)

− Programs specifying a compiler option TEST

• Less effective global optimization

Appendix C. Global Optimization 625

Global optimization is less effective on the following
programs:

− Programs mainly performing I/O operations, and
programs that usually do not use the CPU

− Program using no numeric items but only alphanumeric
items

− Programs referencing nondeclaratives from declaratives

− Programs referencing declaratives from nondeclaratives

− Programs specifying the compiler option TRUNC. For
details, refer to Appendix A, “Compiler Options.”

Notes on Debugging

Since global optimization causes the deletion, shifting and
modification of one or more statements, a program interruption
(for example, data exception) can occur a different number of
times or at a different location.

If the program is interrupted while data items are begin written
in, those data items may not actually be set.

With compiler option NOTRUNC, the program may not operate
properly if the internal or external decimal item is to be
recursively defined. For details, refer to Appendix A, “Compiler
Options.”

626 Appendix C. Global Optimization

Appendix D. Intrinsic Function
List

The following table lists the Intrinsic functions that can be used
with COBOL85.

Table 66. COBOL85 Intrinsic Functions

Classification Function Explanation
Length LENGTH Obtains the length of a data item or

literal.
Size MAX Obtains the maximum value.

MIN Obtains the minimum value.
ORD-MAX Obtains the ordinal position of the

maximum value.
ORD-MIN Obtains the ordinal position of the

minimum value.
Conversion REVERSE Reverses the order of character

strings.
LOWER-CASE Converts uppercase characters to

lowercase characters.
UPPER-CASE Converts lowercase characters to

uppercase characters.
NUMVAL Converts numeric characters to

numeric values.
NUMVAL-C Converts numeric characters

including a comma and currency
sign to numeric values.

628 Appendix D. Intrinsic Function List

Table 66. COBOL85 Intrinsic Functions (cont.)

Classification Function Explanation
Character
operation

CHAR Obtains a character at a specified
position in the collating sequence of a
program.

ORD Obtains the ordinal position of a
specified character in the collating
sequence of a program.

Numeric value
operation

INTEGER Obtains the maximum integer
within a specified range.

INTEGER-PART Obtains integer parts.
RANDOM Obtains random numbers.

Calculation of
interest rate

ANNUITY Obtains the approximate value of
the equal payment rate to 1 (the
principal) according to the rate of
interest and the period.

PRESENT-VALUE Obtains the current price according
to the reduction rate.

Date operation CURRENT-DATE Obtains the current date and time
and the difference between
Greenwich Mean Time.

DATE-OF-INTEGER Obtains the date corresponding to
the day of the year.

DAY-OF-INTEGER Obtains the year and day
corresponding to the day of the
year.

INTEGER-OF-DATE Obtains the day of the year
corresponding to the date.

INTEGER-OF-DAY Obtains the day of the year
corresponding to the year and
day.

WHEN-COMPILED Obtains the date and time the
program was compiled.

Appendix D. Intrinsic Function List 629

Table 66. COBOL85 Intrinsic Functions (cont.)

Classification Function Explanation
Arithmetic
calculation

SQRT Obtains the approximate value of a
square root.

FACTORIAL Obtains factorials.
LOG Obtains natural logarithms.
LOG10 Obtains common logarithms.
MEAN Obtains average values.
MEDIAN Obtains medians.
MIDRANGE Obtains the average values of the

maximum and minimum.
RANGE Obtains the difference between the

maximum and minimum.
STANDARD-DEVIATION Obtains standard deviations.
MOD Obtains a specified value in

specified modulus.
REM Obtains remainders.
SUM Obtains sums.
VARIANCE Obtains variances.

Trigonometric
function

SIN Obtains the approximate value of a
sine.

COS Obtains the approximate value of a
cosine.

TAN Obtains the approximate value of a
tangent.

ASIN Obtains the approximate value of
an inverse sine.

ACOS Obtains the approximate value of
an inverse cosine.

ATAN Obtains the approximate value of
an inverse tangent.

630 Appendix D. Intrinsic Function List

Appendix E. Special Registers
Used with Screen and Form
Functions

This appendix explains the values of special registers used with
screen and form functions. Some functions cannot be used
depending on the FORM RTS version and level. For details, refer
to the FORM RTS online help.

EDIT-MODE

Before execution of the WRITE statement, the output mode of a
data item can be specified for the EDIT-MODE special register.
The following table explains the values that can be specified.

Table 67. Values that can be specified for EDIT-MODE

Value Explanation Value Explanation
" "
(Blank)

Applies output processing. "*" Expands and edits characters.

"X" Does not apply output
processing.

"K" Does not output the initial
value.

"N" Outputs the data as national
data. (National data items only)

"B" Outputs bit map data.

"A" Outputs the data as
alphanumeric data. (National
data items only)

"O" Outputs OLE objects.

632 Appendix E. Special Registers Used with Presentation File Function

EDIT-STATUS

Before execution of the READ statement, the input mode of a
data item can be specified for the EDIT-STATUS special register.
The input results are posted after execution of the READ
statement. The following table explains the values that can be
specified.

Table 68. Values that can be specified for EDIT-STATUS

Value Explanation Value Explanation
" "
(Blank)

Applies input processing. "S" Enables selection status display.

"X" Does not apply input processing. "D" Does not apply input processing
and enables selection status
display.

"B" Disables the specification for
input highlighting.

The following table explains the return values.

Table 69. Values returned to EDIT-STATUS

Value Explanation Value Explanation
"E" The input data contains an error. "S" The item has been selected.

(Only when an item is selected
for input)

"Z" Input was omitted for an item. "I" The item was entered through
the ID card.

" "
(Blank)

The data was inputted as
national data. (National data
items only)

"U" The data was not changed.

"A" The data was inputted as
alphanumeric data. (National
data items only)

Appendix E. Special Registers Used with Presentation File Function 633

EDIT-COLOR

Before execution of the WRITE statement, the display color of a
data item can be specified for the EDIT-COLOR special register.
The following table explains the values that can be specified.

Table 70. Values that can be specified for EDIT-COLOR

Value Explanation Value Explanation
" "
(Blank)

Does not change the previous
information.

"O" Outputs data in dark gray.

"M" Outputs data according to the
color attribute of the screen
descriptor.

"K" Outputs data in dark blue.

"N" Outputs data in non-display
mode.

"F" Outputs data in dark red.

"B" Outputs data in blue. "J" Outputs data in dark pink.
"R" Outputs data in red. "I" Outputs data in dark turquoise.
"P" Outputs data in pink. "C" Outputs data in dark yellow.
"G" Outputs data in green. "E" Outputs data in dark green.
"T" Outputs data in turquoise. "D" Outputs data in gray.
"Y" Outputs data in yellow. "W" Outputs data in white.
"A" Outputs data in black. "H" Outputs data with high

brightness. (*1)
"L" Outputs data with low

brightness. (*1)
*1 High brightness cannot be distinguished from low brightness under this system.

EDIT-OPTION

Before execution of the WRITE statement, attributes of a data
item can be specified for the EDIT-OPTION special register. The
following table explains the values that can be specified.

634 Appendix E. Special Registers Used with Presentation File Function

Table 71. Values that can be specified for EDIT-OPTION

Value Explanation Value Explanation
" "
(Blank)

Does not change the previous
information.

"D" Outputs data without using
any underline, blink, or reverse.

"M" Outputs data according to the
item attribute of the screen
descriptor.

"V" Outputs data using blink and
reverse. (*1)

"U" Outputs data using underline. "A" Outputs data using underline,
blink, and reverse. (*1)

"B" Outputs data using blink. (*1) "-"
(Hyphen)

 Outputs deletion lines. This
value is for a printed form
function. Do not specify this
value for a screen display
function.

"R" Outputs data using reverse.
"S" Outputs data using underline

and blink. (*1)
"T" Outputs data using underline

and reverse.
*1 Blink cannot be used under this system.

EDIT-CURSOR

Before execution of the READ statement, positioning of the
cursor can be specified for the EDIT-CURSOR special register.
The following table explains the values that can be specified.

Table 72. Values that can be specified for EDIT-CURSOR

Value Explanation Value Explanation
" "
(Blank)

Does not position the cursor. "X" Suppresses the specification of
the cursor position item.
(Cursor position item only)

"C" Positions the cursor.

Appendix F. Message Lists

This appendix explains messages written by the WINCOB and
compile commands, the COBOL85 compiler, and the COBOL85
run-time system.

Note: Messages listed in this chapter are 32-bit COBOL
messages. 32-bit COBOL messages are generally more
descriptive and apply to both 32 and 16-bit COBOL. While 16-bit
users may see a slightly different message, the message number
will provide an easy mapping between the older 16-bit messages
and the more descriptive 32-bit messages.

Messages Output by WINCOB and Compile Commands

This section explains messages written by the WINCOB and
compile commands, system action, programmer response, and
parameters. A variable character string is expressed as $s in the
messages below.

'$s' is an invalid source file name.

Compilation terminated.

Response
Specify the correct file name, then re-execute.

An invalid suboption is specified for '$s'.

Compilation terminated.

Response
Specify the correct sub-option, then re-execute.

'-P' option is missing. '$s' option is ignored.

Ignores the option ($s) and continues compilation.

636 Appendix F. Message Lists

 Response
To enable the option ($s), specify it with the -P option, then re-
execute.

Source file name is missing.

Compilation terminated.

Response
Specify the name of the file to be compiled, then re-execute.

'$s' is not a COBOL85 Compiler option.

Compilation terminated.

Response
Specify the correct option, then re-execute.

Argument of '$s' is not specified.

Compilation terminated.

Response
Specify the argument for the option ($s) correctly, then re-
execute.

'$s' was not found.

Compilation terminated.

Response
Specify the correct file name, then re-execute. The file name is
written for $s.

System error '$s1' occurred on '$s2'.

Terminates compilation abnormally.

Response
Check and eliminate the cause of the error. System error code
errno=0xXXX XXX (expressed in hexadecimal) is written for $s1.
The name of the processing in which the system error occurred is
written for $s2.

Appendix F. Message Lists 637

Number of users exceeded the specified maximum.

Compilation terminated.

Response
Start processing when the number of users becomes smaller than
the specified maximum.

Error occurred in LANPACK environment. '$s'.

Compilation terminated.

Response
Check and eliminate the cause of the error. The character string
indicating the error information is written for $s. (See Table 72.)

Table 72. Error information

Character String Error Information Programmer Response
SETERR The environment variable for

LANPACK is not specified
correctly.

Check if LANPACK is installed
correctly.

NOUSFILE The control file for LANPACK is
not found.

OTHERERR Other error. The error is probably caused by
LANPACK. Collect the error
information and call your Fujitsu
SE.

Messages Produced by the COBOL85 Compiler

This section explains messages written by the COBOL85
compiler.

The following shows the message format:

message-number line-number message-text

• message-number

• message number is displayed as shown below.

638 Appendix F. Message Lists

JMNnnnnI-S

JMN: Prefix indicates a COBOL compiler message.

nnnn: Message serial number.

I: Indicates that operator response is not required.

S: Indicates the severity code. (See Table 73.)

Table 74. Severity codes of messages output by the COBOL85 compiler

Severity Code Level Meaning Return Code
I (INFORMATION) Transmitting message Information detected by

the compiler.
0

W (WARNING) Warning error The object program has
been generated. However,
check whether the
compilation results are as
expected.

E (ERROR) Recoverable error The object program has
been generated. An error
(e.g., compiler option
error) has occurred.

1

S (SERIOUS) Serious error The object program has
not been generated.

2

U
(UNRECOVERABLE)

Unrecoverable error Compilation has been
halted.

3

• line-number

The line number of the line containing an error is displayed.
Messages indicating the same error information are displayed
collectively. In this case, more than one line number is
displayed.

• message-text

Explains the error conditions.

Appendix F. Message Lists 639

Messages Produced by the COBOL85 Run-time System

This section explains messages written by the COBOL85 run-
time system.

The following shows the message format:

message-number message-text

• message-number

The message number is displayed as shown below:

JMPnnnni-w

JMP: Prefix indicates a run-time system message.

nnnn: Message serial number.

i: Characters to indicate severity and response required.

I: Operator response is unnecessary.

A: Operator response is necessary.

w: Severity code. (See Table 74.)

Table 75. Meaning of severity codes in execution-time message and their effect on
return codes

Severity Code Level Meaning Effect on Return
Code

I (INFORMATION) Transmitting
message

Information detected by
the run-time system. The
program can be executed
normally.

Not affected

W (WARNING) Warning error The program can be
executed normally.
However, check whether
the execution results are
as expected.

Not affected

640 Appendix F. Message Lists

E (ERROR) Recoverable
error

There is an error, but
 processing is continued
according to the
appropriate assumption.

Affected(*1)

U
(UNRECOVERABLE)

Unrecoverable
error

The system stops
program execution and
performs termination
processing.

Not affected (*2)

*1 If an E-level message output, a return code is set when the COBOL execution unit
terminates. The E-level message return code is assumed to be 12. It is compared to the value
in special register PROGRAM-STATUS, and the larger value is set as the return code.
*2 The program terminates abnormally.

Message-text explains the error conditions.

The following explains an error address written for a parameter
indicating variable information in the message text:

• error address

The place where the error was detected is displayed in the
following form.

− When either compile option TRACE or CHECK is
specified:
PGM= External program name. LINE= Statement number.

Statement number: [COPY modification value -] line number.
Verb number

− For cases except those mentioned above:
PGM= External program name. ADR= nnnnnnnn.

nnnnnnnn : Application address where the error is detected.

The following explains messages written by the COBOL85 run-
time system, system action, and programmer response in the
following format:

message-number
 message-text (*1)

System action or run-time system action

Appendix F. Message Lists 641

Explanation
Explanation of the message text

Response
Action to be taken by the programmer

*1 $n in message text is a parameter indicating variable
information. The parameter is replaced by the program name
or file name in the actual message.

The following explains an access name or file name written for a
parameter indicating variable information in message text:

• Access name:

An access name is used for connecting a program and file
entity. The access name corresponds to the run-time
environment information name specified with the file entity
name at run-time. The access name also corresponds to the
file identifier specified in the ASSIGN clause.

• File name:

A file name is a file entity name. The file name corresponds to
the file identifier literal or data name specified in the ASSIGN
clause. "?" is displayed if the data name is not recognized.

If DISK or PRINTER is specified in the ASSIGN clause, the
file name corresponds to the file name specified in the
SELECT clause.

The file name specified in the SELECT clause is enclosed in
parentheses in the message text.

JMP0001I-U
OPEN ERROR. FILE=$1.

Abnormally terminates the program.

 Response

• Check whether the access name ($1) corresponding to the
function name SYSIN or SYSOUT is assigned correctly.

642 Appendix F. Message Lists

• Before activating Windows, start the SHARE command in
MS-DOS command mode. (16)

JMP0002I-U
PROGRAM '$1' IS RECURSIVELY CALLED.

Abnormally terminates the program.

Explanation
The program ($1) was called, and is re-called before it terminates
(before execution of the STOP RUN or EXIT PROGRAM
statement).

Response
Check the CALL statement in the called program.

JMP0007I-W
INVALID OPTION. $1.

Ignores the run-time option ($1), and continues processing.

If the specified run-time option is SWITCH, the SWITCH run-
time option is enabled as follows:

• If the digit count of the number in the specified numeric part
is smaller than eight, the number is written left-justified.

• If the digit count is greater than eight, the high-order eight
digits are valid.

Response
Specify the correct run-time option, then re-execute.

JMP0009I-U
INSUFFICIENT STORAGE AVAILABLE.

Abnormally terminates the program.

Response
Do the following, then re-execute:

• Stop all applications that are executing at the same time

• Confirm the size of real storage and increase it if necessary

Appendix F. Message Lists 643

• Confirm the size of virtual storage and increase it if necessary

JMP0010I-U
LIBRARY WORK AREA IS BROKEN.

Abnormally terminates the program.

Explanation
The work area of the COBOL85 run-time system is broken.

Response
Check the program as follows:

• If an item including a subscript, index, reference
modification, or OCCURS DEPENDING ON clause is
referred to, confirm that the item is within the reference
range. This check can be made by specifying the CHECK
option.

• If a parameter was specified for transferring data via the
CALL statement, confirm that the sender and receiver have
the same parameter attributes. Especially, check the length
attribute.

• If a file is used, confirm that the record is referenced in the
correct length. For example, if the maximum record length is
used instead of the actual record length and the remaining
portion is filled with spaces, the record is referenced
incorrectly.

JMP0012I-U
INTERNAL PROGRAM IS RECURSIVELY CALLED IN PROGRAM $1.

Abnormally terminates the program.

Explanation
The internal program included in the outermost program ($1)
was called, and the internal program is re-called before it
terminates (before execution of the STOP RUN or EXIT
PROGRAM statement).

644 Appendix F. Message Lists

Response
Check the CALL statement in the called program.

JMP0015I-U
CANNOT CALL PROGRAM '$1'. $2.

Abnormally terminates the program.

Response

• Eliminate the cause of the error according to the error code
written for $2, then re-execute.

(16): Refer to “Error Codes of the Load Library function.”

(32): Refer to Visual C++ on-line help information.

• If no error code is written for $2, check whether the entry
point ($1) specified in the CALL statement exists in the DLL.
(16)

JMP0016I-U
READ/WRITE ERROR. FILE='$1'.

Abnormally terminates the program.

Response
Check the file assigned to the access name ($1).

JMP0018I-U
CLOSE ERROR. FILE='$1'.

Abnormally terminates the program.

Response
Check the file assigned to the access name ($1).

JMP0019I-U
EXTERNAL DATA ATTRIBUTE ERROR. DATA=$1. PGM=$2,$3.

Abnormally terminates the program.

Response
Confirm that the program ($2) in which the error was detected
and the program ($3) which defined the EXTERNAL data ($1)

Appendix F. Message Lists 645

have the same $1 definition. A data name is usually written for
$1. If no data name is defined (e.g., FILLER), the file definition
number that appeared in the source program is written.

JMP0020I-U
INVALID ENTRY INFORMATION. PGM=$1.

Abnormally terminates the program.

Response

(16): Check whether the correspondence between the DLL name,
program name, and secondary entry point name of the called
program ($1) is correctly defined in the initial file for execution.

(32): Check whether the entry information (DLL name, program
name and the second entry point name of the called program ($))
is correctly defined in the entry information file specified for
@CBR_ENTRYFILE or in the initialization file for execution.

JMP0022I-U
EXTERNAL FILE ATTRIBUTE ERROR. FILE=$1. PGM=$2,$3. '$4'.

Abnormally terminates the program.

Response
Confirm that the program ($2) in which the error was detected
and the program ($3) that is first defined the EXTERNAL file ($1)
have the same $1 definition. A file name is usually written for $1.
If the file name cannot be written, the file definition number that
appeared in the source program is written. One of the character
strings shown in Table 75 is written for $4.

Table 76. Character strings written for JMP0022I-U $4

646 Appendix F. Message Lists

 Common file organizations
$4 Error Contents
ACCESS-MODE Access mode
ACCESS-NAME Access name
FILE-ORG File organization
LOCK-MODE LOCK MODE clause specification
MAXRL Maximum record length
MINRL Minimum record length
OPTIONAL Presence or absence of OPTIONAL clause specification
REC-MODE Record format

Appendix F. Message Lists 647

Relative/Indexed file
$4 Error Contents
ALT-KEY Number of alternate record keys
KEY-ATR Key item attribute
KEY-DISP Displacement of the key item in a record
KEY-DUPL Presence or absence of DUPLICATES clause specification
KEY-LEN Key length
REL-ATR Attribute of the relative key item
REL-COL Column count of the relative key item
REL-KEY Presence or absence of RELATIVE KEY clause

specification
REL-LEN Length of the relative key item
REL-NAME Name of the relative key item

Print file
 $4 Error Contents
ADVANCING Presence or absence of the WRITE statement in which

ADVANCING is specified
CHAR-TYPE Presence or absence of specification of how to write the

CHARACTER TYPE clause for format 3
CODE Presence or absence of specification of the CODE clause
CTLCHR Attribute of the control statement area
LINAGE Presence or absence of specification of the LINAGE

clause
LNG-ATR Attribute and column count of the LINAGE data item
LNG1-INTEG Integer of LINAGE data item 1
LNG1-NAME Name of LINAGE data item 1
LNG2-INTEG Integer of LINAGE data item 2
LNG2-NAME Name of LINAGE data item 2
LNG3-INTEG Integer of LINAGE data item 3
LNG3-NAME Name of LINAGE data item 3
LNG4-INTEG Integer of LINAGE data item 4
LNG4-NAME Name of LINAGE data item 4
REC-LEN Record length

648 Appendix F. Message Lists

JMP0026I-W
NO 'ON EXCEPTION' STATEMENT EXISTS, WHEN EXCEPTION OCCURRED ON
'$2 $1' STATEMENT.

Continues processing.

Response
Specify the ON EXCEPTION clause in the $2 statement (ACCEPT
or DISPLAY statement) corresponding to the $1 function name
(ARGUMENT-VALUE or ENVIRONMENT-VALUE).

JMP0092I-U
CANNOT REGISTER WINDOWCLASS '$1'.

Abnormally terminates the program.

Response

Do the following, then re-execute:

• Confirm that the program name does not contend with
another process.

• Check whether the EXPORT statement is specified correctly
in the module definition file.

• Stop all applications that are executing at the same time

• Confirm the size of real storage and increase it if necessary

• Confirm the size of virtual storage and increase it if necessary

• Check whether the initial file format is correct. (16)

JMP0093I-U
CANNOT CREATE WINDOW '$1'.

Abnormally terminates the program.

Appendix F. Message Lists 649

Response

Do the following, then re-execute:

• Confirm that the program name does not contend with
another process.

• Check whether the stack size is large enough.

• Stop all applications that are executing at the same time

• Confirm the size of real storage and increase it if necessary

• Confirm the size of virtual storage and increase it if necessary

• Check whether the initial file format is correct. (16)

JMP0096I-U
RUN-TIME INITIAL FILE'S PATH-NAME IS INVALID.

Abnormally terminates the program.

Response
Check whether the path name of the initial file for execution is
specified correctly.

JMP0097I-U
RUN-TIME SYSTEM IS NOT INSTALLED PROPERLY. FILE=$1.

Abnormally terminates the program.

Response

• Confirm the file($1) is correctly installed.

• Confirm the run-time system is correctly installed. Or,
confirm the installation directory of the run-time system is
correctly set in the environmental variable PATH.

JMP0099I-U
FORCED TERMINATION. CODE=$1.

Terminates the program.

650 Appendix F. Message Lists

Response
Eliminate the cause of the error according to the previous output
message. If no message was written, an internal error probably
occurred. Call your Fujitsu SE. The ABEND (abnormal end) code
is written for $1.

JMP0200I-E
INSUFFICIENT DATA ACCEPTED FROM SYSIN.

Continues processing assuming that the remaining part of the
inputted data area is blank.

Response

• Prepare the number of data items that can be input by
executing the ACCEPT FROM SYSIN statement.

• Confirm that the ACCEPT statement is not executed a
number of times equal to or greater than the number of data
items.

JMP0201A-I
AWAITING A REPLY.

After receiving response, continues processing.

Explanation
The system asks the operator to input data by using the ACCEPT
statement.

Response
Input any necessary data.

JMP0202A-I
'$1'

After receiving response, continues processing.

Explanation
The STOP literal statement is being executed.

Appendix F. Message Lists 651

Response
Input any character. The literal specified in the STOP literal
statement is written for $1.

JMP0204I-U
STATEMENT SEQUENCE ERROR. STM=$1. PGM=$2. LINE=$3. RPT=$4.

Abnormally terminates the program.

Response
Correct the execution sequence of statements for the report or
detail phrase indicated in the message, then re-execute. The type
of statement (INITIATE, GENERATE, or TERMINATE) is written
for $1. The outermost program name is written for $2. The
statement number ([copy-qualification-value-]line-number.verb-
number.) is written for $3. The report name or data name (detail
phrase name) is written for $4.

JMP0206I-W
SCREEN ITEM SIZE IS LARGER THAN LOGICAL SCREEN.

The screen item is displayed partially.

Response
Specify a logical screen size large enough to display the entire
item.

JMP0207I-U
LOGICAL SCREEN SIZE IS TOO LARGE.

Abnormally terminates the program.

Response
Specify the logical screen size so that (column count + 1) * line
count is equal to no more than 16,250, then re-execute.

JMP0208I-E
INVALID NUMERICAL VALUE ACCEPTED.

Writes zero to the receive data item, then continues processing.

652 Appendix F. Message Lists

Response
Specify a value for the numeric item of the ACCEPT statement
correctly, then re-execute.

JMP0301I-E
'$1'($2) OPENED BY '$3' IS NOT CLOSED.

Terminates the program without performing close processing for
the file.

Response
Correct the program ($3) so that the CLOSE statement is
executed for the file ($1) before termination of the program ($3).
The open mode of the file ($1) is written for $2.

JMP0302I-U
CLOSE ERROR DURING PROGRAM TERMINATION. PGM=$1. FILE=$2.

Abnormally terminates the program.

Response
Check and eliminate the cause of the error. If another message is
written, refer to it to determine the cause. The program name is
written for $1. The access name or file name is written for $2.

JMP0310I-I/U
$1 ERROR. FILE=$2. '$3'. $4

Continues program processing if the severity code is I; aborts the
program if the severity code is U. The severity code is
determined as follows:

I: The FILE STATUS clause is specified for file definition.

U: The FILE STATUS clause and error procedures are not
specified.

Appendix F. Message Lists 653

Response
Eliminate the cause of the error according to the character string
written for $3, then re-execute. OPEN or CLOSE is written for $1.
The access name or file name is written for $2. One of the
character strings shown in Tables 77 and 78 are written for $3.
The error address is written for $4.

654 Appendix F. Message Lists

Table 77. Character strings written for JMP0310I-I/U $3 (1)

$3 Error Contents Programmer Response
ACC-METHOD The specified file access method

is invalid. (*1)
Specify the file access method
correctly.

BLKED-FILE The file cannot be used because
of a CLOSE statement error.

Check and eliminate the cause of
the CLOSE statement error.

ERFLD=xxxx Error code from the system
xxxx: Expressed in hexadecimal

Check for and eliminate the
cause of the error according to
the system error code. (*2)

ERRCD=xxxx A presentation file access error
occurred.

Check for and eliminate the
cause of the error according to
the manuals of the connected
products. (*3)

EXCL-ERROR An exclusive error occurred. Re-execute. If the exclusive error
occurs repeatedly, confirm that
the error does not affect
operation.

FCB The FCB control statement is
invalid

Check the FCB control statement.

FILE-LOCK The file is exclusively used by
another user, or the file cannot
be used exclusively because it is
being used by another user.

FTNCD=xxxx Error code from the system
xxxx: Expressed in hexadecimal

Check for and eliminate the
cause of the error according to
the system error code. (*2)

LOAD The subprogram could not be
loaded.

Check the program run-time
environment.

LOCK-FULL The lock table is full. Re-execute. If the error occurs
repeatedly, confirm that the error
does not affect operation.

NON-FILE The file did not exist when the
OPEN statement without
OUTPUT specified was
executed.

Before executing the program,
create the file.

NON-REEL The CLOSE statement with
REEL or UNIT specified was
executed.

Correct the program.

Appendix F. Message Lists 655

Table 77. Character strings written for JMP0310I-I/U $3 (1) (cont.)

$3 Error Contents Programmer Response
NON-UNIQUE Allocated file has a duplicate

key.
Make the keys duplicate in the
program specification.

OPEN-MODE The specified file open mode is
invalid.

Specify the correct open mode,
then open the file.

READ-ONLY A read-only file is used, or the
specified file name is invalid.

Change the file attribute, or
specify the correct file name.

REC-MODE The specified record format is
invalid.

Specify the correct record
format.

RMERR=xxxx Error code from the system
xxxx: Expressed in hexadecimal

A system error probably
occurred. Collect the error
information, then call your
Fujitsu SE.

UNSUPPORT The file does not support the
specified function.

Check the file attribute, or
confirm that there is no physical
error.

*1 An attempt was made to access a different file organization or to access an indexed file
requiring recovery.
*2 - If a message is generated showing error information ERFLD=101 when a print file
(without the FORMAT clause specified) is executed, ensure the following:

Only the required number of printer drivers are installed.
The FCB control statement is less than 2,048 bytes.
All the specified forms overlay patterns are correct.
All the registered forms overlay pattern names are correct.
The spool area is large enough.
(Confirm the disk capacity of the environment variable (TMP.)
directory.
Stop all other applications that are executing at the same time.
Confirm the size of real storage and increase it if necessary.
Confirm the size of virtual storage and increase it if necessary.
If no problems are found in the above checks, a system error probably
occurred.
 Collect the error information, then call your Fujitsu SE.

 - For Btrieve file error codes, refer to the “Btrieve Manual” issued by NOVELL Inc.
 - See “System Error Codes” for details on character strings indicating errors in the file

message text other than that above.
*3 If ERRCD=90xx is output while FORM RTS is used, refer to the FORM RTS online help for
xx.

656 Appendix F. Message Lists

If any of the character strings shown in Table 77 are displayed,
eliminate any conflicts between the file or record definition in the
program and the attribute of the file to be processed.

Table 78. Character strings written for JMP0310I-I/U $3 (2)

$3 Error Contents Check Item in Program
INV-BLKSZ The block length is invalid. Length specified in the BLOCK

CONTAINS clause
INV-CODEST The code set is invalid. Character code specified in the

CODE SET clause
INV-COLSEQ The collating sequence is invalid. Alphabet name specified in the

PROGRAM COLLATING
SEQUENCE clause

INV-DELMTR The record delimiter is invalid. Data specified in the
ORGANIZATION, RECORD,
and RECORD DELIMITER
clauses

INV-KEYDUP Determination of whether to
specify a key in duplicate
(DUPLICATES) is incorrect.

Presence or absence of
specification of the RECORD
KEY, ALTERNATE RECORD
KEY, and DUPLICATES clauses

INV-KEYLEN The key length of the allocated
file conflicts with the definition
in the program.

Data name length specified in the
RECORD KEY and ALTERNATE
RECORD KEY clauses

INV-KEYSTR The key structure is invalid. Data name length and data name
count specified in the RECORD
KEY and ALTERNATE RECORD
KEY clauses, or the relative
position in the record of the data
name specified in the clauses.

INV-LRECL The record length of the allocated
file conflicts with the definition
in the program.

Data specified in the
ORGANIZATION clause.
Record length specified in the
RECORD CONTAINS clause.

INV-RKP The relative key position of the
assigned file conflicts with the
definition in the program.

Relative position in the record of
the data name specified in the
RECORD KEY and ALTERNATE
RECORD KEY clauses

KEY-ATTR The key attribute of the allocated
file conflicts with the definition
in the program.

Data name attribute specified in
the RECORD KEY and
ALTERNATE RECORD KEY
clauses

Appendix F. Message Lists 657

Table 78. Character strings written for JMP0310I-I/U $3 (2) (cont.)

$3 Error Contents Check Item in Program
KEY-ESDS A sequential file was not

allocated when specified.
Data specified in the
ORGANIZATION clause

KEY-KSDS An indexed file was not allocated
when specified.

KEY-RRDS A relative file was not allocated
when specified.

KEY-TEXT A text file was not allocated as a
print file.

JMP0311I-I/U
MISSING ALLOCATION. FILE=$1. $2.

Continues program processing if the severity code is I; aborts the
program if the severity code is U. The severity code is
determined as follows:

I: The FILE STATUS clause is specified for file definition.

U: The FILE STATUS clause and error procedures are not
specified.

Response
Allocate the file ($1) if necessary, or specify the file correctly, then
re-execute. The error address is written for $2.

JMP0313I-I/U
INSUFFICIENT STORAGE AVAILABLE. STM=$1. FILE=$2. $3

Discontinues error file processing, then continues program
processing if the severity code is I; aborts the program if the
severity code is U. The severity code is determined as follows:

I: The FILE STATUS clause is specified for file definition.

U: The FILE STATUS clause and error procedures are not
specified.

658 Appendix F. Message Lists

Response
Do the following, then re-execute:

• Stop any other applications that are executing at the same
time

• Confirm the size of real storage and increase it if necessary

• Confirm the size of virtual storage and increase it if necessary

The COBOL statement (OPEN, CLOSE, START, READ, WRITE,
REWRITE, or DELETE) that caused the virtual storage to become
insufficient is written for $1. The file name or access name of the
processed file is written for $2. The error address is written for
$3.

JMP0320I-I/U
INPUT/OUTPUT ERROR. STM=$1. FILE=$2. '$3'. $4

Discontinues error file processing, then continues program
processing if the severity code is I; aborts the program if the
severity code is U. The severity code is determined as follows:

I: The FILE STATUS clause is specified for file definition.
U: The FILE STATUS clause and error procedures are not
specified.

Response
Eliminate the cause of the error according to the character string
written for $3. The COBOL statement (START, READ, WRITE,
REWRITE, or DELETE) that caused the input-output error is
written for $1. The file name or access name of the processed file
is written for $2. One of the character strings shown in Table 79 is
written for $3. The error address is written for $4.

Appendix F. Message Lists 659

Table 79. Character strings written for JMP0320I-I/U $3

$3 Error Contents Programmer Response
ALTD-LEN The record length specified in

the REWRITE statement is
different from the length of an
existing record.

Do not change the length of an
existing record when updating
the record.

BLKED-FILE The file cannot be used because
of a CLOSE statement error.

If message JMP0310I-I is
displayed before JMP0320I-I,
eliminate the cause of the error
according to message
JMP0310I-I.

ERRCD=xxxx A presentation file access error
occurred.

Check for and eliminate the
cause of the error according to
the manuals of the linked
products. (*1)

EXCEED-LEN The length of the record to be
written exceeds the maximum
record length specified in the
program.

Set the record length to within
the specified maximum record
length.

EXCL-ERROR An exclusive error occurred. Re-execute. If the exclusive
error occurs repeatedly,
confirm that the error does not
affect operation.

FCB The FCB contents are invalid. Check the FCB contents.
FDBK=xxxx Error code from the system

xxxx: Expressed in
hexadecimal

Check for and eliminate the
cause of the error according to
the system error code. (*2)

FONT A font that did not exist in the
system was specified for
output.

Install necessary fonts in the
system.

FOVL The specified directory
containing the forms overlay
definition is invalid, or the
forms overlay definition is
invalid.

Check the initial file to
determine if the directory
containing the correct forms
overlay definition is specified.

FTNCD=xxxx Error code from the system
xxxx: Expressed in
hexadecimal

Check for and eliminate the
cause of the error according to
the system error code. (*2)

660 Appendix F. Message Lists

Table 79. Character strings written for JMP0320I-I/U $3 (cont.)

$3 Error Contents Programmer Response
INV-CHAR A line sequential file record or

print file record contains an
invalid character.

Check the data contents.

INV-LEN The record length specified in
the WRITE or REWRITE
statement is invalid.

Specify the correct length of the
record to be written.

KEY-CHANGE The key value at request for
updating the record was
different from the key value at
reading of the record.

Correct the program so that the
key value is not changed at
updating of the record.

LOAD The subprogram could not be
loaded.

Check the program run-time
environment.

NO-TRANS Some characters in native mode
cannot be converted into a code
set.

Check the data contents.

PHYSIC-ERR A physical error occurred. Check the file contents
(physical structure).

READ-ONLY A read-only file is used. Change the file attribute.
REC-LOCK The record is exclusively used

by another user, or the record
cannot be used exclusively
because it is being used by
another user.

Re-execute. If the exclusive
error occurs repeatedly,
confirm that the error does not
affect operation.

R.KEY-ERR The relative key contents
conflict with the definition
specified in the PICTURE
clause during random or
dynamic access.

Specify a data item size in the
PICTURE clause large enough
to store the maximum value of
the relative key.

The relative key item value is 0. Specify a non-zero value for the
relative key item.

Appendix F. Message Lists 661

Table 79. Character strings written for JMP0320I-I/U $3 (cont.)

$3 Error Contents Programmer Response
RMERR=xxxx Error code from the system

xxxx: Expressed in
hexadecimal

A system error probably
occurred. Collect the error
information, then call your
Fujitsu SE.

RRN>R.KEY When the READ or WRITE
statement is executed for
sequential processing, the
relative record number exceeds
the maximum value of the
relative key item.

Specify a size of the relative key
item large enough to store the
maximum relative record
number of the file

*1 If ERRCD=90xx is output while Form RTS is used, refer to the Form RTS HELP for xx.
*2 • If a message is output showing error information FDBK=101 when a print file (without the

FORMAT clause specified) is executed, ensure the following:
Only the required number of printer drivers are installed.
The FCB control statement is less than 2,048 bytes.
All the specified forms overlay patterns are correct.
The spool area is large enough.
(Confirm the disk capacity of the environment variable (TMP.)
directory.
Stop all other applications that are executing at the same time.
Confirm the size of real storage and increase it if necessary.
Confirm the size of virtual storage and increase it if necessary.
All the registered forms overlay pattern names are correct.
If no problems are found in the above checks, a system error probably occurred.
Collect the error information, then call your Fujitsu SE.

 • For Btrieve file error codes, refer to the “Btrieve Manual” issued by NOVELL Inc.
 • See “System Error Codes” for details on character strings indicating errors in the file message

text other than the above.

JMP0321I-U
AT END CONDITION. STM=READ. FILE=$1. $2

Abnormally terminates the program.

Response

• Specify AT END phrase in the READ statement to perform
file end processing.

662 Appendix F. Message Lists

• Check whether the number of input data items is correct.

The file name or access name of the file with which a file end
condition was produced is written for $1. The error address is
written for $2.

JMP0322I-U
KEY SEQUENCE ERROR. STM=$1. FILE=$2. $3

Abnormally terminates the program.

Response

• If $1 is the WRITE statement, correct the program so that the
key values are written in ascending order.

• If $1 is the REWRITE or DELETE statement, correct the
program so that the key value of the record read by the
previous READ statement is not changed.

The file name or access name of the file with which an invalid
key condition was produced is written for $2. The error address
is written for $3.

JMP0323I-U
DUPLICATE KEY ERROR. STM=$1. FILE=$2. $3

Abnormally terminates the program.

Response
Correct the program so that a key is not duplicated. The error
COBOL statement (WRITE, REWRITE or CLOSE) is written for
$1. The file name or access name of the error file is written for $2.
The error address is written for $3.

JMP0324I-U
RECORD NOT FOUND. STM=$1. FILE=$2. $3

Abnormally terminates the program.

Appendix F. Message Lists 663

Response

• Correct the program so that attempts to access a non-existent
record are inhibited.

• Correct the program by using the FILE STATUS or INVALID
KEY clause so that the program checks an attempt to access a
non-existent record.

The error COBOL statement (READ, REWRITE, START, or
DELETE) is written for $1. The file name or access name of the
error file is written for $2. The error address is written for $3.

JMP0325I-I/U
BOUNDARY VIOLATION ERROR. STM=$1. FILE=$2. $3

Continues program processing if the severity code is I; aborts the
program if the severity code is U. The severity code is
determined as follows:

I: The FILE STATUS clause is specified for file definition.

U: The FILE STATUS clause and error procedures are not
specified.

Response
Increase the size of the file space, then re-execute. The error
COBOL statement (WRITE, REWRITE, READ, START, or
CLOSE) is written for $1. The file name or access name of the
error file is written for $2. The error address is written for $3.

JMP0326I-U
NO-SPACE CONDITION. STM=$1. FILE=$2. $3

Abnormally terminates the program.

Response
Increase the size of the file space, then re-execute. The error
COBOL statement (WRITE, REWRITE, READ, START, or
CLOSE) is written for $1. The file name or access name of the
error file is written for $2. The error address is written for $3.

664 Appendix F. Message Lists

JMP0327I-U
INVALID KEY CONDITION. STM=$1. FILE=$2. '$3'. $4

Abnormally terminates the program.

Response
If $3 is RRN>R.KEY, correct the program so that the relative
record number does not exceed the maximum value permitted
for the relative key item when records are written in sequential
processing. Alternatively, correct the program by using the
INVALID KEY clause so that processing for an invalid key
condition is performed. The error COBOL statement (WRITE) is
written for $1. The file name or access name of the error file is
written for $2. The error address is written for $4.

JMP0328I-I/U
DEPENDING ON OBJECT VALUE IS OUT OF RANGE. STM=WRITE. FILE=$1.
$2

Continues program processing if the severity code is I; aborts the
program if the severity code is U. The severity code is
determined as follows:

I: The FILE STATUS clause is specified for file definition.

U: The FILE STATUS clause and error procedures are not
specified.

Response
Correct the program so that the DEPENDING ON value is
defined in the specified range. The file name or access name of
the error file is written for $1. The error address is written for $2.

JMP0330I-I/U
STATEMENT SEQUENCE ERROR. STM=$1. FILE=$2. '$3'. $4

Continues program processing if the severity code is I; aborts the
program if the severity code is U. The severity code is
determined as follows:

I: The FILE STATUS clause is specified for file definition.

Appendix F. Message Lists 665

U: The FILE STATUS clause and error procedures are not
specified.

Response
Eliminate the cause of the error according to the character string
written for $3, then re-execute. The COBOL statement (OPEN,
CLOSE, READ, WRITE, REWRITE, START, or DELETE) with
which an input-output error occurred is written for $1. The file
name or access name of the processed file is written for $2. One
of the character strings shown in Table 80 is written for $3. The
error address is written for $4.

Table 80. Character strings written for JMP0330I-I/U $3

$3 Error Information
AT-END After a file at end condition was produced, the READ statement was

re-executed.
DUPL-OPEN The OPEN statement was executed for an open file.
LOCKED After the CLOSE statement with LOCK phrase specified was executed

an attempt was made to open the file.
NO-READ The previous statement is not a successful READ statement.
NOSPACE After a no-space condition was produced, the WRITE statement

was re-executed.
NOT-OPENED An input-output statement was executed for a closed file.
OPEN-MODE The OPEN mode is invalid.
POS-ERROR The file position indicator is undefined.

JMP0340I-U
CONTROL RECORD FORMAT ERROR. STM=WRITE. FILE=$1. '$2'. $3

Abnormally terminates the program.

Response
Eliminate the cause of the error according to the character string
written for $2, then re-execute. The file name or access name of
the processed file is written for $1. One of the character strings
shown in Table 81 is written for $2 and shows the relationship
between the character strings and control record contents. The
error address is written for $3.

666 Appendix F. Message Lists

Table 81. Character strings written for JMP0340I-U $2

$2 Field Contents $2 Field Contents
 BIND Binding direction OSTK Offset stack
 CMOD Copy modification module

name
 PFRM Printing format

 C-NO Number of copies POST Printing surface positioning
 FCB FCB name PRTA Unprintable area
 FID Format definition deck

name
 RSV Reserved area (not blank)

 FORM Forms code R-NO Forms overlay printing
count

 FOVL Forms overlay module
name

 SIDE Printing surface
specification

 F-NO Number of forms overlay
fields

 SIZE Forms size

 HOP Hopper STK Stacker
 ID Control record ID S-NO Copy correction start

number
 LEN Control record length T-NO Number of character array

table for copy correction
 LOAD Dynamic loading WDTH Binding width
 MODE Control mode XTB Name of character array

table for copy correction
 OFST Print origin position

JMP0350I-U
 USE PROCEDURE IS RECURSIVELY CALLED.

Abnormally terminates the program.

Response
If execution of an input-output statement during an error
procedure causes re-execution of the error procedure, do not let
control reach the last statement of the first-executed error
procedure.

Appendix F. Message Lists 667

JMP0360I-U
PS FILE ACCESS ERROR. CODE=$1.

Abnormally terminates the program.

Response
Check the contents of the destination specified in the SYMBOLIC
DESTINATION clause. If the contents are correct, a system error
probably occurred. Collect the error information, then call your
Fujitsu SE. The internal code indicating detailed error
information is written for $1.

JMP0363I-U
SYMBOLIC DESTINATION ERROR. FILE=$1.

Abnormally terminates the program.

Response
Specify the destination name in the SYMBOLIC DESTINATION
clause correctly, then re-execute. The file name or access name is
written for $1.

JMP0364I-U
CLAUSE '$1' ERROR. FILE=$2.

Abnormally terminates the program.

Response
Specify the correct data item in the $1 clause, then re-execute. The
file name or access name is written for $2.

JMP0365I-U
DUPLICATE FONT NAMES WERE FOUND. '$1'.

Abnormally terminates the program.

Response
Multiple fonts indicated by $1 were installed. Use the control
panel font application to delete unnecessary fonts, then re-
execute: Ensure that:

668 Appendix F. Message Lists

Windows 95

“Print True Type as Graphic” is checked in the printer Properties
dialog box.

Windows 3.1

• The same font type is not specified for the WIN.INI [fonts]
section and WIFEMAN.INI [FontPackages] section.

• Mincho, Gothic, or Courier is generally used as the device
font of the printer. None of the above three fonts is specified
for the WIN.INI [fonts] section and WIFEMAN.INI
[FontPackages] section.

JMP0370I-U
INSUFFICIENT STORAGE AVAILABLE TO PERFORM SQL.

Abnormally terminates the program.

Response
Do the following, then re-execute.

• Stop all applications that are executing at the same time

• Confirm the size of real storage and increase it if necessary

• Confirm the size of virtual storage and increase it if necessary

JMP0371I-U
ENVIRONMENT INFORMATION FILE ERROR TO PERFORM SQL. '$1'.

Abnormally terminates the program.

Response
Specify data in the environment information file correctly, then
re-execute. The character string indicating the error information
is written for $1. (See Table 81.)

Appendix F. Message Lists 669

Table 82. Character strings written for JMP0371I-U $1

 (With SequeLink)
$1 Error Information
@SQL_CLI No client interface type was specified, or the specified

character is not supported.
@SequeLink_Inf No SequeLink information file was specified, or the specified

SequeLink information file does not exist.
@SQL_HOSTNM No host name was specified.
@SQL_SERVER No server name was specified.
@SQL_USERID No user ID was specified.
@SQL_PASSWORD No password was specified.
@SQL_DBKIND No database type was specified, or the specified database type

is not supported.
@SQL_SERVICE No service name was specified.
@SQL_LOGPRM1 Logon parameter 1 was specified.
@SQL_LOGPRM2 Logon parameter 2 was specified.

 (With ODBC)
$1 Error Information
@ODBC_Inf No ODBC information file was specified, or the specified

ODBC information file does not exist.
@SQL_DATASRC No data source name was specified.
@SQL_SERVER No server name was specified.
@SQL_USERID No user ID was specified.
@SQL_PASSWORD No password was specified.

JMP0372I-U
START ENVIRONMENT ERROR TO PERFORM SQL. '$1'. $2

Abnormally terminates the program.

Response
Eliminate the cause of the error according to the character string
written for $1, then re-execute. (See Table 82.)

670 Appendix F. Message Lists

Table 83. Character string written for JMP0372I-U $1

$1 Error Contents Programmer Response
LOAD The run-time library could not

be loaded.
Eliminate the cause of the error according to
the detail code (Load Library function error
code) written for $2.

FREE The run-time library could not
be loaded.

Eliminate the cause of the error according to
the detail code (Load Library function error
code) written for $2.

JMP0373I-I
$1 ERROR. STM=$2. SERVER=$3. '$4'.

Continues program processing.

Response
Eliminate the cause of the error according to the error code
written for $4, then re-execute. The type of the client interface is
written for $1. The error SQL statement is written for $2. The
name of the error server is written for $3.

For the error code, refer to the error code manual of the client
interface.

JMP0374I-U
UNRECOGNIZABLE SQL STATEMENT WAS FOUND.

Abnormally terminates the program.

Response
Delete the SQL statement that cannot be used, then re-execute.
For SQL statements that cannot be used, see the requirements for
each database environment and notes on the environment.

Appendix F. Message Lists 671

JMP0392I-U
THE NETWORK DATABASE FUNCTION CANNOT BE USED.

Abnormally terminates the program.

Response

• Change the program so that it does not use functions specific
to GS-series hosts.

• To use distributed development support functions, re-execute
under the debugger. (16)

JMP0400I-U
ACCESS ENVIRONMENT ERROR OCCURRED. SYS=$1,FILE=$2,BLK=$3,$4=$5

Abnormally terminates the program.

Response
A system error probably occurred. Collect the error information,
then call your Fujitsu SE. The following information is written for
$1 to $5:

$1: Error information from the system, or the character string
 NONE if the system sends no error information

$2: System information

$3: Control block address at which the error was detected

$4: ERR or REQ

$5: The following is set as the internal error information:

If $4 is ERR: Error-detected location

If $4 is REQ: Processing code

672 Appendix F. Message Lists

JMP0410I-U
STOP RUN STATEMENT MUST NOT BE EXECUTED USING JMPCINT2.

Abnormally terminates the program.

Response
Replace the STOP RUN statement in the application program
with the EXIT PROGRAM statement.

JMP0420I-I
CANNOT OBTAIN WINDOW HANDLE. '$1'. $2

Returns -1.

Response
Eliminate the cause of the error, then re-execute. The character
string indicating the error information is written for $1. (See
Table 84.)

Table 84. Character strings written for JMP0420I-I $1

$1 Error Contents Programmer Response
ACC-ERROR A window handle allocation error

occurred.
Check for and eliminate the cause
of the error according to the
FORM RTS code written for $2.
(*1)

INV-ENV An operating environment error
occurred.

Check the COBOL operating
environment.

INV-KIND The file type corresponding to the
specified file-identifier is invalid.

Specify the presentation file-
identifier.

NON-FILE The file corresponding to the
specified file-identifier does not
exist.

Specify the file-identifier correctly,
or check if the file was opened
normally.

*1 Refer to the FORM RTS online help.

Appendix F. Message Lists 673

JMP0600I-I/U
INSUFFICIENT STORAGE AVAILABLE TO PERFORM SORT OR MERGE
STATEMENT.

Continues program processing if the severity code is I; aborts the
program if the severity code is U. The severity code is
determined as follows:

I: SORT-STATUS is referred to for file definition.

U: SORT-STATUS is not referred to.

Response
Do the following, then re-execute.

• Stop all applications that are executing at the same time

• Confirm the size of real storage and increase it if necessary

• Confirm the size of virtual storage and increase it if necessary

JMP0601I-I/U
SORT OR MERGE STATEMENT ERROR. $1. $2

Continues program processing if the severity code is I; aborts the
program if the severity code is U. The severity code is
determined as follows:

I: SORT-STATUS is referred to for file definition.

U: SORT-STATUS is not referred to.

Response
Eliminate the cause of the error according to the value written for
$1, then re-execute. The file information (file name or access
name) or detailed information is written for $1. The error address
is written for $2. Table 85 explains the values written for $1.

674 Appendix F. Message Lists

Table 85. Values written for JMP0601I-I/U $1

$1 Error Contents Programmer Response
51 An error occurred during input

processing for the record to be sorted.
If the same error occurs when the
program is re-executed, a system error
probably occurred. Collect the error
information, then call your Fujitsu SE.

52 Memory is insufficient. Modify the environment to allocate
enough memory.

53
54
56
59
62
101

An error occurred during input
processing for the record to be sorted.

If the same error occurs when the
program is re-executed, a system error
probably occurred. Collect the error
information, then call your Fujitsu SE.

102 An error occurred during output
processing for the record to be sorted.

103 An error occurred during input
processing for the record to be merged.

110 The address of the record to be sorted
could not be obtained.

111 The record length is invalid. Check whether the record length
complies with the COBOL85
specification.

112
113

An error occurred during input
processing for the record to be sorted.

If the same error occurs when the
program is re-executed, a system error
probably occurred. Collect the error
information, then call your Fujitsu SE.

114 An error occurred during input
processing for the record to be merged.

208 An error occurred when a temporary
file (for sorting and merging) was
opened.

Modify the environment (e.g., hard
disk) to allocate a large enough
temporary file. If the same error occurs
when the program is re-executed, a
system error probably occurred. Collect
the error information, then call your
Fujitsu SE.

212 The size of the temporary file (for
sorting and merging) is insufficient.

Modify the environment (e.g., hard
disk) to allocate a large enough
temporary file.

Appendix F. Message Lists 675

Table 85. Values written for JMP0601I-I/U $1 (cont.)

$1 Error Contents Programmer Response
214 A temporary file (for sorting and

merging) cannot be created.
Modify the environment (e.g., hard
disk) to allocate a large enough
temporary file.

224 An error occurred during write to a
temporary file (for sorting and
merging).

If the same error occurs when the
program is re-executed, a system error
probably occurred. Collect the error
information, then call your Fujitsu SE.

250 A sort-merge program error occurred.
Other A PowerSORT error occurred while

using PowerSORT.
Refer to the PowerSORT online help.

Do the following, then re-execute.

• Stop all applications that are executing at the same time

• Confirm the size of real storage and increase it if necessary

• Confirm the size of virtual storage and increase it if necessary

JMP0608I-I/U
RELEASE STATEMENT CAN NOT BE EXECUTED IN OUTPUT PROCEDURE. $1

Continues program processing if the severity code is I; aborts the
program if the severity code is U. The severity code is
determined as follows:

I: SORT-STATUS is referred to for file definition.
U: SORT-STATUS is not referred to.

Response
Correct the program. The error address is written for $1.

JMP0609I-I/U
RETURN STATEMENT CAN NOT BE EXECUTED IN INPUT PROCEDURE. $1

Continues program processing if the severity code is I; aborts the
program if the severity code is U. The severity code is
determined as follows:

676 Appendix F. Message Lists

I: SORT-STATUS is referred to for file definition.
U: SORT-STATUS is not referred to.

Response
Correct the program. The error address is written for $1.

JMP0612I-I/U
RETURN STATEMENT CAN NOT BE EXECUTED AFTER AT END. $1

Continues program processing if the severity code is I; aborts the
program if the severity code is U. The severity code is
determined as follows:

I: SORT-STATUS is referred to for file definition.
U: SORT-STATUS is not referred to.

Response
Correct the program so that the RETURN statement is not
executed after a file at end condition is produced. The error
address is written for $1.

JMP0613I-I/U
SORT/MERGE LIBRARY CANNOT BE LOADED. $1 $2

Continues program processing if the severity code is I; aborts the
program if the severity code is U. The severity code is
determined as follows:

I: SORT-STATUS is referred to for file definition.
U: SORT-STATUS is not referred to.

Response
Remove the cause of the error, then re-execute. The library file
name is set in $1 and the error code is set in $2.

Refer to the Visual C++ online help.

Note: If $1 and $2 are not output, confirm whether or not
PowerSORT is correctly installed.

Appendix F. Message Lists 677

JMP0701I-U
GCB IS BROKEN.

Abnormally terminates the program.

Response
The program is broken. Correct the program as follows, then re-
execute:

• If an item including a subscript, index, reference
modification, or OCCURS DEPENDING ON clause is
referred to, confirm that the item is within the allowable
reference range.

• If there is a parameter for transferring data through the CALL
statement, confirm that the sender and receiver have the
same parameter attributes. (Be sure to check the length
attribute.)

• If a file is used, confirm that the correct record length is
referenced. (For example, if SPACE clear processing is
performed with the maximum record length instead of the
actual record length when a variable-length input file is used,
the record length referenced is incorrect.)

JMP0702I-U
LIA IS BROKEN.

Abnormally terminates the program.

Response
See JMP0701I-U.

JMP0703I-U
RCB IS BROKEN.

Abnormally terminates the program.

Response
See JMP0701I-U.

678 Appendix F. Message Lists

JMP0704I-U
DEBUG TABLE IS BROKEN.

Abnormally terminates the program.

Response
See JMP0701I-U.

JMP0705I-W
INSUFFICIENT STORAGE AVAILABLE. FUNC=$1.

Cancels the '$1' function, then continues processing.

Response
Do the following, then re-execute.

• Stop all applications that are executing at the same time

• Confirm the size of real storage and increase it if necessary

• Confirm the size of virtual storage and increase it if necessary

The character string indicating the function is written for $1.
(TRACE: Trace function/COUNT: Count function (16))

JMP0724I-W
FILE CAN NOT BE OPENED. FILE=$1. '$2' OPTION IGNORED.

Continues processing without outputting '$2' information.

Response
Check whether the file is allocated correctly. The access name is
written for $1. The debug function name is written for $2.

JMP0725I-W
FILE CAN NOT BE OPENED. '$1' OPTION IGNORED.

Continues processing without outputting '$1' information.

Response
Check whether the area is large enough to create a file. The
debug function name is written for $1.

Appendix F. Message Lists 679

JMP0770I-W
DEBUGGER CANNOT BE ACTIVE. TEST OPTION IGNORED. $1. '$2' $3.

Ignores the compiler option TEST and continues processing.

Response
Eliminate the cause of the error according to the character string
written for $2, then re-execute. The name of the error program is
written for $1. The following explains the character strings
written for $2:

'MEMORY SHORTAGE': The memory is insufficient.

'FILE NOT FOUND': The $1 file is not found.

'PATH NOT FOUND': The search path is not found.

'PATH NOT SET': No search path was specified.

'LOADING ERROR': Loading failed.

The error code (Load Library function error code) was written for
$3.

JMP0820I-E/U
SUBSCRIPT/INDEX IS OUT OF RANGE. PGM=$1. LINE=$2. OPD=$3 ($4)

E level: Uses the subscript or index value as is, then continues
processing.

U level: Aborts the program.

Response
Specify a correct value for the subscript or index indicated in the
message, then re-execute. The outermost program name is
written for $1. The statement number (line-information[copy-
qualification-value-]line-number.verb-number) is written for $2.
The operand name is written for $3. The number of dimensions is
written for $4.

680 Appendix F. Message Lists

JMP0821I-E/U
REFERENCE MODIFIER IS OUT OF RANGE. PGM=$1. LINE=$2. OPD=$3.

E level: Performs reference modification with an incorrect value,
then continues processing.

U level: Aborts the program.

Response
Correct the program so that reference modification of the data
item indicated in the message is performed within the specified
range. The outermost program name is written for $1. The
statement number (line-information[copy-qualification-value-
]line-number.verb-number) is written for $2. The operand name
is written for $3.

JMP0822I-E/U
ODO OBJECT VALUE IS OUT OF RANGE. PGM=$1. LINE=$2. OPD=$3.
ODO=$4.

E level: Uses the object value specified in the OCCURS
DEPENDING ON clause as is, then continues processing.

U level: Aborts the program.

Explanation
The object value specified in the OCCURS DEPENDING ON
clause is not within the permitted range.

Response
Specify a correct value for the object (in the OCCURS
DEPENDING ON clause) indicated in the message, then re-
execute. The outermost program name is written for $1. The
statement number (line-information[copy-qualification-value-
]line-number.verb-number) is written for $2. The name of the
operand that refers to the data including the OCCURS
DEPENDING outermost-program-name ON clause is written for
$3. The object name specified in the OCCURS DEPENDING ON
clause is written for $4.

Appendix F. Message Lists 681

JMP0899I-U
LOGICAL ERROR.

Abnormally terminates the programs.

Response
The program or dynamic area may be damaged because of a
program error. Check for the cause of the error in the same
manner as when JMP0701I-U is written.

JMP0901I-E
FUNCTION $1 ERROR, ARGUMENT ABSOLUTE VALUE IS MORE THAN 3.53E+15.

Returns 0, then continues processing.

Response
Specify the absolute value of the argument within the calculation
enabled range, then re-execute. The name of the error function
(SIN or COS) is written for $1.

JMP0902I-E
FUNCTION $1 ERROR, ARGUMENT ABSOLUTE VALUE IS MORE THAN 1.0.

Returns 0, then continues processing.

Response
Specify the absolute value of the argument that can be stored in
the definition area, then re-execute. The name of the error
function (ASIN or ACOS) is written for $1.

JMP0903I-E
FUNCTION $1 ERROR, ARGUMENT VALUE IS OUT OF RANGE.

Returns 0, then continues processing.

Response
Specify the value of the argument that can be stored in the
definition area, then re-execute. The name of the error function
(LOG, LOG10, ANNUITY, FACTORIAL, RANDOM, SQRT, or
TAN) is written for $1.

682 Appendix F. Message Lists

JMP0904I-E
FUNCTION $1 ERROR, ARGUMENT VALUE IS INVALID.

Returns 0, then continues processing.

Response
Specify the value of the argument that satisfies the condition of
each function, then re-execute. The name of the error function is
written for $1.

JMP0905I-E
FUNCTION ANNUITY ERROR, ARITHMETIC EXCEPTION.

Returns 0, then continues processing.

Response
Specify the value of the argument that does not cause zero
division, then re-execute.

System Error Codes

This section explains system error codes.

The meanings of the error codes are different between Windows
3.1 and Windows 95/Windows NT. See the error code table for
each system.

• With Windows 3.1: See Table 86.

• With Windows 95/Windows NT: See Table 87.

Appendix F. Message Lists 683

Error Codes (16)

Table 86. System error codes (16)

CODE Explanation Programmer Response
1 (0x01) Invalid function code Before activating Windows, confirm

that the SHARE command is active
in MS-DOS command mode.

4 (0x04) The number of files to be opened is
too large.

Specify the correct value for the
SHARE command option.

5 (0x05) Access cannot be made. Check if the file is allocated correctly,
or specify the correct value for the
SHARE command option.

15 (0x0F) Invalid drive name. Allocate the file to a drive that can be
used.

20 (0x14) A disk unit is defective. Confirm that the disk unit is not
damaged.

36 (0x24) The shared buffer is full. Specify a larger value for the /L
operand of the SHARE command.

Refer to Chapter 5 for more information about the SHARE
command.

684 Appendix F. Message Lists

Error Codes (32)

Table 87. System error codes (32)

CODE Explanation Programmer Response
2 (0x02) The specified file cannot be found. Check to see if the product is

correctly installed.
4 (0x04) The file cannot be accessed. Check the run-time environment.
5 (0x05) Access cannot be made. Check whether the file is allocated

correctly.
8 (0x08) Command cannot be processed

because the applicable storage area
is insufficient.

Do the following, then re-execute:
n Stop all applications that are

executing at the same time
n Confirm the size of real storage

and increase it if necessary
n Confirm the size of virtual

storage and increase it if
necessary

15 (0x0F) Invalid drive name. Check whether the drive name is
correct.

19 (0x13) Write-protected disk. Check the disk.
20 (0x14) A disk unit is defective. Confirm that the disk unit is not

damaged.
21 (0x15) The drive cannot get ready. Check the drive.
34 (0x22) The incorrect disk is in the drive. Check the disk.
53 (0x35) The network path is not found. Check the specified network path

name.
59 (0x3B) An unexpected network error

occurred.
Check whether the network
environment is set up correctly.

127 (0x7F) The specified procedure cannot be
found.

Check to see if the product is
correctly installed.

206 (0xCE) The file name is too long. Check the file name.
1785 (0x6F9) The disk may be not formatted. Check whether the disk is formatted.

Appendix G. Writing Special
Literals

This appendix explains how to write literals for specifying names
(for example, program and file names) defined in the system.

Program Name Literal

Any characters can be used for a literal specifying a program
name in the PROGRAM-ID paragraph, CALL statement, or
CANCEL statement. There are no configuration rules. You must
determine if the literal complies with the linker rules.

Text Name Literal

For the text name literal to be written in the COPY statement,
specify the name of the file containing library text in the
following format:

"[drive-name:] [path-name] file-name [extension]"

[drive-name]

Specify the drive-name by a single character from A to Z. When
the drive-name is omitted, the current drive will be used.

[path-name]

Specify the directory storing the file in the following format:

[\][directory-name [\ directory-name] ...]\

When the path-name is omitted, the file will be placed in the
directory specified by compile option LIB. When compiling from

686 Appendix G. Writing Special Literals

the WINCOB window, the source file to be compiled is stored in
the current directory. When the relativity path-name is specified,
the current directory is added to the front.

[File-name]

Specify the file-name.

[extension]

Specify the file extension if possible. Note: "CBL" and "COB" may
not be used. For example:

• "C:\COPY\A.CBL"

• "A.CPY"

• "C:\COPY\A"

File-Identifier Literal

For the file-identifier literal to be written in the ASSIGN clause of
the file control entry, specify the file to be processed in the
following manner:

[drive-name]

Specify a drive name with an alphabetic character from A to Z. A
name not specified with an alphabetic character from A to Z is
regarded as a port name. When the drive name is omitted, the
current drive will be used.

Appendix G. Writing Special Literals 687

[port-name]

A port name can be specified for sequential files only. If a port
name is specified, specification of a path name and file-reference-
name is invalid.

To specify a printer with a port name, use port name LPT1,
LPT2, or LPT3.

[path-name]

Specify the directory storing the file in the following format:

 [\][directory-name[\directory-name] ...]\

If a path name is omitted the current directory is used.

[file-name]

Specify a file name.

[extension]

Specify any character string for identifying the type of the file.

For example:

• "A:\COBOL\A.DAT"

• "LPT1:"

• "B.TXT"

688 Appendix G. Writing Special Literals

Appendix H. High-Speed File
Processing

Record sequential files and line sequential files can be accessed
faster by specifying an available range. This appendix explains
methods of specification for high-speed file processing and notes
on high-speed file processing.

Specification Methods

This section explains methods of specification for high-speed file
processing. The specification methods apply to both record
sequential files and line sequential files.

When defining a file-identifier as a file-reference-identifier in the
program, specify ",BSAM" following the file-name to be allocated
upon setting of environment variable information. Refer to
“Environment Variables” in Chapter 5 for details on setting
environment variables information.

file-identifier=[path-name]file-name,BSAM

When defining a data name as a file-reference-identifier in the
program, specify ",BSAM" following the file-name to be allocated
at definition of the data-name in the program.

MOVE "[path-name]file-name,BSAM" TO data-name.

When defining a file-identifier literal as a file-reference-identifier
in the program, specify ",BSAM" following the file-name to be
allocated at definition of the file-identifier literal in the program.

ASSIGN TO "[path-name]file-name,BSAM"

690 Appendix H. High-Speed File Processing

Notes

Records cannot be updated (REWRITE statement cannot be
executed). If a record is updated, an error occurs during
execution (Record sequential files only).

If files are shared and you want to permit file sharing among
different processes, all files must be in shared mode and opened
with INPUT specified. Operation is not guaranteed if a file is
opened without specifying INPUT. File sharing is not permitted
in the same process. Operation is not guaranteed if a file is
shared with in the same process.

High-speed file processing cannot be used if DISK is specified as
the file-reference-identifier.

If a record read from a line sequential file includes a tab, the tab
code is not replaced by a blank.

Appendix I. GS-series Function
Comparison

Table 88 compares functions between the GS-series (M-series)
and COBOL85 for Windows. Refer to Chapter 16, “Distributed
Development Support Functions” for a definition of GS-series
terms.

The following symbols are used in the "Comparison" column of
Table 88:

A: Can be used in the same manner as the GS-series.

B: Can be used under given conditions in the same manner
as the GS-series.

C: Cannot be used with the GS-series. (The function is
specific to this system or incompatible with the GS-series.)

D: Compilation can be done, but the function is disabled
during execution.

E: Can be used, but the function works differently than when
it works with the GS-series.

F: Cannot be used with this system.

692 Appendix I. Function Comparison

Table 88. Function comparison between the GS-series and this system

Function Classification Comparison Remarks
Classification Function outline
Character set All types of

characters that can
be used in the
program

A

COBOL words User-defined
word

All types of user-
defined words

 A Use of the
underscore (_)
character has a
specific
function in this
system.

Figurative
constant

All figurative
constants that can
be used in the
program

 A

Special register SHIFT-IN,SHIFT-
OUT, SORT-CORE-
SIZE, SORT-
MESSAGE

 D

PROGRAM-
STATUS, RETURN-
CODE

 B The attributes
are different.
GS-series:
S9(4)BINARY
This system:
S9(9)COMP-5

Other than the
above

 A

Function name SYSPUNCH,STAC
KER-01 to 12,
CSP,S01,S02
SYSPCH,BUSHU,S
OKAKU, ON-
YOMI, KUN-YOMI

 D

SWITCH-8 C
CHANNEL02 to12
 C02 to C12

 B The FCB
control
statement must
be specified.

Appendix I. Function Comparison 693

Table 88. Function comparison between the GS-series and this system (cont.)

Function Classification Comparison Remarks
Classification Function outline
COBOL words Function name Other than the

above
A

Literal National item literal
National
alphanumeric literal
National
association literal
National language
literal

 D

Hexadecimal literal
 National
hexadecimal literal
National code
literal

 E Note
differences
among codes.

Other than the
above

 A

Others Specification of
quotation mark as a
constant

C GS-Series:
Compile
option
APOST/QUOTE
is followed
This system:
Automatically
determined.

Method of
writing
program

Reference
format

Sequence number A

Fixed format,
variable format

 A

Data definition Data
description

All clauses that can
be described in the
data description
entry

 A

Data type COMP-5 C
Other than the
above

 A

694 Appendix I. Function Comparison

Table 88. Function comparison between the GS-series and this system (cont.)

Function Classification Comparison Remarks
Classification Function outline
Expression Arithmetic

expression
Binary arithmetic
operator, unary
arithmetic operator

 A

Conditional
expression

All relational
operators that can
be used

 A

Linkage
expression

Use of linkage
expression

 C

Class
condition

All class conditions
 that can be used

 A

Other
conditions

Condition-name
condition, sign
condition, switch-
status condition

 A

Nucleus Environment
definition

SUBSCHEMA-
NAME paragraph

B (16) Operation can
be checked
with the
debugger.

D (32)
Other than the
above

 A

Basic
instruction

All nucleus module
statements

 A

Appendix I. Function Comparison 695

Table 88. Function comparison between the GS-series and this system (cont.)

Function Classification Comparison Remarks
Classification Function outline
Sequential file Environment

definition
APPLY WRITE-
ONLY clause
MULTIPLE FILE
TAPE clause
RERUN clause
PASSWORD clause
RESERVE AREA
clause

 D

Data name
specified
 in the ASSIGN
clause
DISK specified in
the ASSIGN clause
PRINTER specified
in the ASSIGN
clause
LOCK MODE
clause

 C

Other than the
above

 A

File definition CODE-SET clause D

BLOCK
CONTAINS clause

 B No functional
meaning for
this system.
The program
that was
operating with
the GS-series
operates as
before.

Other than the
above

 A

696 Appendix I. Function Comparison

Table 88. Function comparison between the GS-series and this system (cont.)

Function Classification Comparison Remarks
Classification Function outline
Sequential file Input-output

statement
WITH LOCK
specified in an
input-output
statement
UNLOCK
statement

 C

Other than the
above

 A

Line sequential file All C

Relative file Environment
definition

PASSWORD clause
 RERUN clause

 D

Data name
specified
 in the ASSIGN
clause
DISK specified in
the ASSIGN clause
LOCK MODE
clause

 C

Other than the
above

 A

File definition CODE-SET clause D

BLOCK
CONTAINS clause

 B No functional
meaning for
this system.
The program
that was
operating with
the GS-series
operates as
before.

Appendix I. Function Comparison 697

Table 88. Function comparison between the GS-series and this system (cont.)

Function Classification Comparison Remarks
Classification Function outline
Relative file File definition Other than the

above
 A

Input-output
statement

WITH LOCK
specified in an
input-output
statement
UNLOCK
statement

 C

Other than the
above

 A

Indexed file Environment
definition

PASSWORD clause
RERUN clause

 D

Data name
specified
in the ASSIGN
clause
DISK specified in
the ASSIGN clause
LOCK MODE
clause

 C

Permission to form
a single key with
multiple data items

 B Can be used
with this
system under
given
conditions.

Other than the
above

 A

698 Appendix I. Function Comparison

Table 88. Function comparison between the GS-series and this system (cont.)

Function Classification Comparison Remarks
Classification Function outline
Indexed file File definition CODE-SET clause D

BLOCK
CONTAINS clause

 B No functional
meaning for
this system.
The program
that was
operating with
the GS-series
operates as
before.

Other than the
above

 A

Input-output
statement

WITH LOCK
specified in an
input-output
statement
UNLOCK
statement

 C

POSITIONING
POINTER specified
in the START
statement

 F

Other than the
above

 A

Sort-merge Mnemonic
name

BUSHU,SOKAKU,
ON-YOMI,KUN-
YOMI

 D

Special register SORT-CORE-SIZE,
SORT-MESSAGE

 D

Other than the
above

 A

Others All A

Appendix I. Function Comparison 699

Table 88. Function comparison between the GS-series and this system (cont.)

Function Classification Comparison Remarks
Classification Function outline
Inter-program
communication

PROCEDURE
DIVISION

WITH specification C

CALL
statement

BY VALUE
specification

 C

WITH specification C
Other than the
above

 A

Others All A
Source text
manipulation

COPY
statement

OF/IN SYSDBDCT
specification

 F

OF/IN XMDLIB
and XFDLIB
specification

 C

Library text name
literal

 C

JOINING
specification only

 C

Report writer
feature

File definition BLOCK
CONTAINS clause
CODE clause

 D

Other than the
above

 A

Others All A

700 Appendix I. Function Comparison

Table 88. Function comparison between the GS-series and this system (cont.)

Function Classification Comparison Remarks
Classification Function outline
Presentation
file

Environment
definition

APL, CMD, TRM,
or WST specified in
the SYMBOLIC
DESTINATION
clause

 B (16) Operation can
be checked
with the
debugger.

 D (32)
APPLY
MULTICONVERSA
TION-MODE
clause

 D

PROCESSING
TIME clause

 C

DESTINATION
CONTROL clause

 D

MESSAGE
SEQUENCE clause

 D

MESSAGE CODE
clause (not 4
bytes)

 D

Other than the
above

 A

File definition All A
Input-output
statement

All A

Special register All A
Debugging functions All D Compilation

only if used
with the GS-
series

Segmentation All D Compilation
only if used
with the GS-
series

Appendix I. Function Comparison 701

Table 88. Function comparison between the GS-series and this system (cont.)

Function Classification Comparison Remarks
Classification Function outline
Communication All D
Extension System control All D

Network
database

All B (16) Operation can
be checked
with the
debugger.

 D (32)
AIM/RDB All F
SD function All A

Built-in function All C
Screen handling All C
Command line argument
handling and environment
variable handling

All C

Checking Program Operation

Programs created in common function scope can be checked
under this system. Some functions may cause program execution
methods and execution results to differ between systems.

When operating a program using the inter-program
communication function, if the program is activated through a
system, the method of specifying the parameters to be passed to
the program is different.

To pass parameters in the global server system format under this
system, use the initialization file (COBOL85.CBR) or Run-time
Environment Setup window to specify the parameters. Refer to
“Setting Run-time Environment Information” in Chapter 5 for
the method of specifying the global server system format
parameters in the initialization file (COBOL85.CBR) and the Run-
time Environment Setup window.

702 Appendix I. Function Comparison

For example, a COBOL program description is as follows:

If a program uses a function specific to the GS-series, special
processing is required for operating the program under this
system.

To substitute another resource and operate a program using the
communication function, execute input-output statements for the
sequential file. Check the contents of the sequential file to
determine whether the program operates as expected.

Appendix I. Function Comparison 703

If skipping a non-executable statement by using an interactive
debugger, and the file to be processed or the subprogram does
not exist, use the interactive debugger to skip input-output and
CALL statements. For details on how to use the interactive
debugger, see the “Fujitsu COBOL Debugging Guide.”

Notes

If a hexadecimal non-numeric literal and national hexadecimal
nonnumeric literal are used in the program, take the code into
consideration.

If the presentation file function is used, the expansion format of a
presentation file record fetched from a screen and form
descriptors (this system) or format descriptor (GS-series) is
different when the COBOL source program is compiled.

If a function name (CHANNEL02 to CHANNEL12, or C02 to
C12) is used, the FCB control statement is required. The FCB
control statement format used with the global server ADJUST is
also used under this system.

704 Appendix I. Function Comparison

Appendix J. Command Formats

This appendix explains compiler commands and linker
commands.

The command formats differ between Windows 95/Windows
NT and Windows 3.1.

Compiler Commands

Use the compiler commands to compile a COBOL source
program and to generate an object program.

For details on generated files and files required for compiler
command execution, refer to “Resources Necessary for
Compilation” in Chapter 3. For compiler command specified
location and basic usage, refer to “Using Commands to Compile”
also in Chapter 3.

The following are compiler commands:

• (16): COBOL command

• (32): COBOL command, or COBOL32 command

Input Format
Command Operand
COBOL
COBOL32 (32)

[option-list] file-name …
[option-list] file-name …

Operands

At least one space is needed between the command name and
each operand. Items enclosed in "[" and "]" can be omitted. An
absolute or relative path name can be specified for a directory
name and file name in the explanation below.

706 Appendix J. Command Formats

[option-list]

Specify the information to be posted to the COBOL85 compiler.
See Table 88 for the specification.

The following shows the priority determined by the option
specification methods:

1. Using the compiler directing statement in the source file
(Refer to “Compiler Directing Statement” in Chapter 2)

2. Using the -WC option (See Table 88)

3. Using an option other than the -WC option (See Table 88)

4. Using the option file (See Table 88)

5. Using the environment variable (32) (Refer to “Setting Up
Environment Variables” in Chapter 1)

[file-name]

Specify the name of the source file to be compiled. One or more
file names can be specified.

Table 89. Compiler command options

Specification Specification Format

Directory of library files [-I directory-name]

Directory of screen and form descriptor files [-m directory-name]

Directory of file descriptor files [-f directory-name]

Whether to output a compiler listing file, and the output
destination file name

 [-P file-name]

Directory of a compiler listing file [-dp directory-name]

Use of the TRACE function [-Dr]
Use of the CHECK function [-Dk]

Appendix J. Command Formats 707

Table 89. Compiler command options (cont.)

Specification Specification Format

Use of an interactive debugger [-Dt]
Directory of a debugging information file [-dd directory-name]
Directory of an object file [-do directory-name]
Compilation of main program [-M]
Global optimization [-O]
Option file [-i file-name]
Directory of a SUBSCHEMA definition file (16) [-A directory-name]
Compiler option [-WC,"compiler-option"]

No space is needed before file-name or directory-name in the
specification format.

 [-I directory-name]

If the library function (COPY statement) is used, specify the
directory of libraries. If libraries exist in more than one directory,
specify the -I option more than once. The directories are searched
for in the order they were specified.

A COPY statement with IN/OF specified is ignored.

Note: The -I option functions the same as compiler option LIB.
For further information, refer to Appendix A, “Compiler
Options.”

[-m directory-name]

If the COPY statement with IN/OF XMDLIB specified is used for
fetching a record definition from screen and form descriptors,
specify the directory of the screen and form descriptor file. If
screen and form descriptor file exists in more than one directory,
specify the -m option more than once. The directories are
searched for in the order specified.

708 Appendix J. Command Formats

Note: The -m option functions the same as compiler option
FORMLIB. For further information, refer to Appendix A,
“Compiler Options.”

[-f directory-name]

If the COPY statement with IN/OF XFDLIB specified is used for
fetching a record definition from file descriptor, specify the
directory of the file descriptor file. If file descriptor file exists in
more than one directory, specify the -f option more than once.
The directories are searched for in the order specified.

Note: The -f option functions the same as the compiler option
FILELIB. For further information, refer to Appendix A,
“Compiler Options.”

[-P file-name]

Determine whether to output a compiler listing file, and specify
the file name. If the file name is not specified, the file is output to
the directory of the source file.

If the -P option is specified with the -dp option, the file linked
with the directory specified in the -dp option is the final
compilation list file. Do not specify an absolute path name for
file-name.

[-dp directory-name]

A compiler listing file is usually under the directory of the source
file. Specify the -dp option to define a new directory for the
compilation list file.

Note: The -dp option functions the same as compiler option
PRINT. For further information, refer to Appendix A, “Compiler
Options.”

[-Dr]

Specify the -Dr option to use the TRACE function.

Appendix J. Command Formats 709

For details on using the TRACE function, refer to the “Fujitsu
COBOL Debugging Guide.”

If the -Dr option is specified, processing for displaying trace
information is incorporated into the object program.
Consequently, execution performance lowers. When the debug
function terminates, recompile the program without the -Dr
option specified.

Note: The -Dr option functions the same as compiler option
TRACE. For further information, refer to Appendix A, “Compiler
Options.”

[-Dk]

To use the CHECK function, specify the -Dk option.

For details on using the CHECK function, refer to the “Fujitsu
COBOL Debugging Guide.”

If the -Dk option is specified, processing for checking subscripts,
indexes, and reference modification is incorporated into the
object program. Consequently, execution performance is
degraded. When the debug function terminates, recompile the
program without the -Dk option specified.

Note: The -Dk option functions the same as compiler option
CHECK. For further information, refer to Appendix A,
“Compiler Options.”

[-Dt]

Specify the -Dt option to use an interactive debugger.

Note: The -Dt option functions the same as the compiler option
TEST. For further information, refer to Appendix A, “Compiler
Options” and the “Fujitsu COBOL Debugging Guide.”

710 Appendix J. Command Formats

[-dd directory-name]

Specify a directory of a debug information file. If the -dd option
is not specified, the debug information file is created in the
directory of the source file.

The -dd option is effective only when it is specified with the -Dt
option or the TEST compiler option.

[-do directory-name]

Specify a directory for storing an object file. If the -do option is
not specified, the object file is created in the directory of the
source file.

[-M]

Specify the -M option to compile a COBOL program serving as
the main program for execution.

Note: The -M option functions the same as compiler option
MAIN. For further information, refer to Appendix A, “Compiler
Options.”

[-O]

Specify the -O option to create a globally optimized object
program.

Note: The -O option functions the same as compiler option
OPTIMIZE. For further information, refer to Appendix A,
“Compiler Options” and Appendix C, “Global Optimization.”

[-i file-name]

If a compiler option is specified in an option file (storing
character strings as compiler options), specify the name of the
option file. An option file can be created by selecting items from
the list box using the WINCOB command.

The following example shows the WINCOB command
specification format for creating an option file:

Appendix J. Command Formats 711

WINCOB -i path-name-of-option-file

[-A directory-name] (16)

Specify the directory of the SUBSCHEMA definition file which is
specified in the SUBSCHEMA-NAME paragraph. If a
SUBSCHEMA definition file exists in more than one directory,
specify the -A option more than once. The directories are
searched for in the order they were specified.

Note: The -A option functions the same as compiler option
AIMLIB. For further information, refer to Appendix A,
“Compiler Options.”

[-WC,"compiler-option"]

Specify a compiler option for the COBOL85 compiler. For
compiler options and their specification formats, refer to
Appendix A, “Compiler Options.”

More than one compiler option can be specified. The specified
compiler options must be separated by a comma. If the same
compiler option is specified more than once, the compiler option
specified last is effective.

The priority level of compiler instructions is as follows:

• Compiler option specified by compiler instruction statement
in source program.

• Compiler option specified by the -WC option of the
COBOL32 command.

• Option specified for the COBOL32 command.

• Compiler option in the option file specified by -I option of
COBOL32 command.

Do not specify the following options in the -WC option:

AIMLIB, FILEEXT, FILELIB, FORMEXT, FORMLIB, LIB, OBJECT, PRINT, TEST

712 Appendix J. Command Formats

Linker Commands

Use the linker commands to link a program and generate an
executable program.

For details on generated files and required files for link
command execution, refer to “Resources Required for Linking”
in Chapter 4. For linker command specified location and basic
usage, refer to “Using Commands to Link” in Chapter 4.

The following are linker commands:

• (16): LINK command, LIB command, IMPLIB command

• (32): LINK command, LIB command

Appendix J. Command Formats 713

LINK Command (16)

This section explains the LINK command for Windows 3.1.

Input Format
Command Operand
LINK (16) [option-list] file-name-list

Operands

At least one space is needed between the command name and
each operand. Items enclosed in "[" and "]" can be omitted. An
absolute or relative path name can be specified for a directory
name and file name in the explanation below.

[option-list]

Specify LINK command options. See Table 89 for the
specification.

[file-name-list]

File names can be specified following the option list. The
following shows the specification format:

object-file-name,[output-file-name],[map-file-name],[library-name],
module-definition-file

[object-file-name]

Specify one or more object files to be linked. The specified object
file names must be separated by a space or plus sign (+). The
default file name extension is OBJ.

[output-file-name]

Specify an executable file or DLL. If an executable file is specified,
the default file name extent is EXE. If DLL is specified, the
default file name extension is DLL.

714 Appendix J. Command Formats

[map-file-name]

Specify a map file. The default file name extension is MAP.

[library-name]

Specify a standard (object code) library or import library. If a
standard object library is specified, only the object module
required for external reference is linked.

[module-definition-file-name]

Specify a module definition file. The default file name extension
is DEF.

Table 90. LINK command options (16)

Specification Specification Format
Prepares for debugger option [/CO]
Restricts the linker to use only standard libraries [/NOD]
Disables the library extended dictionary. [/NOE]
Outputs a list of public symbols to the map file. [/M]

For details on the above options, refer to “Setting Linker
Options” in Chapter 4.

LIB Command (16)

This section explains the LIB command for Windows 3.1.

The LIB command does the following:

• Creates library files

• Deletes, adds, and replaces library modules

• Copies and moves one module from the library to another file

• Outputs library modules to the public symbol list

For details on generated files and files for LIB command
execution, refer to “Resources Required for Linking” in Chapter
4.

Appendix J. Command Formats 715

Input Format
Command Operand
LIB (16) library-name [option-list][command][,[list-output-

destination] [, [new-library-name]]][;]

Operands

At least one space is needed between the command name and
each operand. Items enclosed in "[" and "]" can be omitted. An
absolute or relative path name can be specified for a directory
name and file name in the explanation below.

[library-name]

Specify the library to be processed. The default file name
extension is LIB.

[option-list]

Specify the information to be posted to the LIB command. For the
specification, see Table 90.

[command]

Specify the file to be processed following the command symbol.
By specifying the file name, the contents of the library specified
for library-name can be changed, a new library can be created,
and one module can be copied or moved from the library to
another file. For the command symbols and the files to be
specified, see Table 91.

[list-output-destination]

The following information is output to the file specified for list-
output-destination:

• Public symbol lists in the library (in alphabetical order)

• Module lists in the library

716 Appendix J. Command Formats

[new-library-name]

Specify new-library-name to save a library as another library
when the library contents are changed. If a new library is not
specified, the contents of the current library are updated. The
original contents are saved in a file with which the current library
name extension is changed to BAK.

Table 91. LIB command options (16)

Specification Specification
Format

Changing or setting a library page size [/PAGESIZE:n]
Whether to distinguish uppercase letters from
lowercase letters

 [/N | /I]

[/PAGESIZE:n]

For n, specify a value (16 to 32, or 768) raised to the power of 2.
The default page size of a new library is 16 bytes.

[/N | /I]

Specify /N to distinguish uppercase letters from lowercase
letters. Otherwise, specify /I. The default is /I.

If a library is created with /N specified, a mark is given to the
library indicating creation with /N specified. If any of the
libraries to be linked was created with /N specified, the output
library is treated as a library created with /N specified.

Appendix J. Command Formats 717

Table 92. Command symbols

Symbol Explanation File Specified
+ Addition of

module
 Specify name of the object file to be added. The object file
name extension OBJ can be omitted.

 Linkage of library Specify the library file to be linked. The library file name
extension LIB must be specified.

- Deletion of
module

 Specify name of the object module to be deleted. A path or
extension cannot be assigned to the object module name.

-+ Replacement of
module

 Specify name of the object module to be replaced. A path
or extension cannot be assigned to the object module name.
To replace a module, the object file name extension must be
OBJ and the file must be in the current directory.

* Module copy to
another file

 Specify name of the object module to be copied. The copy
destination file is created in the current directory. The
name of the copy destination file is the object module name
with extension OBJ added.

-* Module move to
another file

 Specify name of the object module to be moved. The move
destination file is created in the current directory. The
name of the move destination file is the object module
name with extension OBJ added.

Press the CTRL and C keys together to cancel LIB command
processing.

IMPLIB Command (16)

This section explains the IMPLIB command of Windows 3.1.

Use the IMPLIB command to create import libraries.

For import libraries, refer to “Resources Required for Linking” in
Chapter 4.

718 Appendix J. Command Formats

Input Format
Command Operand
IMPLIB (16) import-library-name module-definition-file-name | dll-name

Operands

At least one space is required between the command name and
the operand.

import-library-name

Specify name of the import library to be created.

module-definition-file-name or dll-name

Specify a module definition file for a DLL or the DLL name. An
import library is created according to the contents of the module
definition file for a DLL specified here.

LINK Command (32)

This section explains the LINK command for the Windows 95
and Windows NT version.

Input Format
Command Operand
LINK (32) file-name-list [option-list]

Operands

At least one space is needed between the command name and
each operand. Items enclosed in "[" and "]" can be omitted. An
absolute or relative path name can be specified for a directory
name and file name in the explanation below.

Appendix J. Command Formats 719

[file-name-list]

The following shows the specification format:

object-file-name library-name

[object-file-name]

Specify one or more object files to be linked. The specified object
file names must be separated by a blank or tab.

[library-name]

Specify a standard (object code) library, import library, or export
file. If a standard object library is specified, only the object
module required for external reference is linked.

The following files must be specified:

• COBOL import library

• LIBC.LIB,KERNEL32.LIB,USER32.LIB

[option-list]

Specify LINK command options. For the specification, see Table
93.

Table 93. LINK command options (32)

Specification Specification Format
Default base address of the executable file or DLL /BASE:address
Preparing for use of the COBOL85 interactive debugger /DEBUG

/DEBUGTYPE:COFF
(For linkage with C language using Visual C++) /DEBUGTYPE:BOTH
Creating a dynamic link library (DLL) /DLL
Program execution entry point /ENTRY:symbol
Name of the output main file /OUT:filename

720 Appendix J. Command Formats

LIB Command (32)

This section explains the LIB command for Windows 95 and
Windows NT.

Use the LIB command to create a standard library or import
library.

For details on generated files and files for LIB command
execution, refer to “Resources Required for Linking” in Chapter
4.

Input Format When Creating a Library File
Command Operand
LIB (32) file-name-list [option-list]

Operands

At least one space is needed between the command name and
each operand. Items enclosed in "[" and "]" can be omitted. An
absolute or relative path name can be specified for a directory
name and file name in the explanation below.

[file-name-list]

Specify one or more object files. Existing libraries can also be
specified.

[option-list]

Specify the information to be posted to the LIB command. For the
specification, see Table 93.

Appendix J. Command Formats 721

Input Format When Creating an Import Library
Command Operand
LIB (32) /DEF:module-definition-file-name

/MACHINE:IX86
/OUT:import-library-name
[option-list] object-file-name-list

Operands

At least one space is needed between the command name and
each operand. Items enclosed in "[" and "]" can be omitted. An
absolute or relative path name can be specified for a directory
name and file name in the explanation below.

[/DEF:]

The /DEF option specifies a module definition file for creating an
import library. Specify the module definition file following the
colon (:).

[/MACHINE:]

The /MACHINE option specifies the type of the CPU that
executes the program.

[/OUT:]

The /OUT option specifies the import library to be created.

[option-list]

Specify the information to be posted to the LIB command. For the
specification, see Table 93.

[object-file-name-list]

Specify the object file for creating an import library.

722 Appendix J. Command Formats

Table 94. LIB command options (32)

Specification Specification Format
Copying a specified object member from a
 specified library

 /EXTRACT:object-member-name

Deleting a specified object member from a
 specified library

 /REMOVE:object-member-name

Press the CTRL and C keys together to cancel LIB command
processing.

When an import library is created, an export file is created under
the import library name with the extension LIB changed to EXP.

Appendix K. FCB Control
Statement

The following shows the specification format of the FCB control
statement:

• LPI information

LPI information can be sequentially specified in format of
(line-spacing, line-count) from the top of the page. Specify 6,
8, or 12 (lpi) for line spacing.

• CH information

Specify a line number for CHANNEL-01 to CHANNEL-12.
Channel number 1 identifies the first line that can be printed.

724 Appendix K. FCB Control Statement

• SIZE information

Specify the length of paper in units of 1/10 inch. The default
is 110 (11 inches).

• FORM information

Specify paper in fixed size. If a fixed size is specified, the
length of the paper is uniquely determined for PORT
(portrait) or LAND (landscape).

Appendix L. Indexed File
Recovery

This appendix explains the indexed file recovery function and
indexed file simple recovery function.

Indexed File Recovery Function

Function

The indexed file recovery function refreshes normal sections
from the beginning of the file, and outputs abnormal sections to
another file. This allows you to recover an unusable indexed file
(unusable because it was not closed normally).

The indexed file recovery function works the same as the
Recovery command of the COBOL85 FILE UTILITY.

If an indexed file in the unusable state is opened, 90 is returned
as the I-O status.

Coding Format

#include "f1bcfutc.h" /* function-declaration (16) */
#include "f3bifutc.h" /* function-declaration (32) */
signed long int CFURCOV(char far*ixdfilename,

 char far *blkdatname,
 char far *message);

• [ixdfilename]

Name of the file to be recovered

726 Appendix L. Indexed File Recovery

• [blkdatname]

Name of the file containing data which could not be
recovered

• [message]

Area storing the execution result (message) of the indexed file
recovery function

CFURCOV Function

The following are explanations of the parameters of this function.

[ixdfilename]

Specify the address of the area storing the name (character string)
of the indexed file to be recovered. The character string must end
with a NULL (0x00) or blank (0x20).

[blkdatname]

Specify the address of the area storing the name (character string)
of the file where unrecoverable records are written. The character
string must end with a NULL (0x00) or blank (0x20). Specify 0 if
a file for writing unrecoverable records is unnecessary.

[message]

Specify the address of the area storing a message that indicates
the execution result of the indexed file recovery function.
Allocate the storage area to the calling source (512 bytes
required). Specify 0 if a message is unnecessary.

Appendix L. Indexed File Recovery 727

Return Value
The code corresponding to the message is returned as the
execution result of the indexed file recovery function. See Table
94 for codes and messages.

The following is an example how to use the indexed file recovery
function (with Windows 95 and Windows NT) (32):

#include "f3bifutc.h"
void callcobfrcov(void)
{

char ixdfilename[512] = "c:\\ixdfile\0";
char blkdatname[512] = "c:\\blkdat\0";

 char message[512];
CFURCOV(ixdfilename,blkdatname,message);

 return;
}

728 Appendix L. Indexed File Recovery

Indexed File Simple Recovery Function

Function

Resets flags in an indexed file in unusable state so that the file is
enabled. Unlike the indexed file recovery function, the indexed
file simple recovery function does not recover abnormal sections
in the indexed file. Consequently, access to the indexed file after
flag reset can result in an error because of conflicting data.

If an indexed file in the unusable state is opened, 90 is returned
as the I-O status.

Coding Format

#include "f1bcfutc.h" /* function-declaration (16) */
#include "f3bifutc.h" /* function-declaration (32) */
signed long int CFURCOVS(char far*ixdfilename,

 char far *message);

• ixdfilename

Name of the file to be recovered

• message

Area storing the execution result (message) of the indexed file
simple recovery function

CFURCOVS Function
The following are explanations of the parameters of this function.

ixdfilename

Specify the address of the area storing the name (character string)
of the indexed file to be recovered. The character string must end
with a NULL (0x00) or blank (0x20).

Appendix L. Indexed File Recovery 729

message

Specify the address of the area storing a message that indicates
the execution result of the indexed file simple recovery function.
Allocate the storage area to the calling source (512 bytes
required). Specify 0 if a message is unnecessary.

Return Value
The code corresponding to the message is returned as the
execution result of the indexed file simple recovery function. For
codes and messages, see Table 94.

The following is an example of how to use the indexed file
simple recovery function (with Windows NT) (32):

#include "f3bifutc.h"
void callcobfrcovs(void)
{

char ixdfilename[512] = "c:\\ixdfile\0";
char message[512];
CFURCOVS(ixdfilename,message);
return;

}

730 Appendix L. Indexed File Recovery

Notes

At creation, include the following files for calling from a C
program:

• (16): f1bcfutc.h

• (32): f3bifutc.h

At compilation, for calling from a C program, refer to
“Compiling Programs” in Chapter 10.

At linkage, use the LINK command to link the following files:

• (16): f1bcfutc.lib

• (32): f3bifutc.lib

For calling from a C program, refer to “Linking Programs” in
Chapter 10.

At execution, set up the following environment:

• Before starting Windows, execute the SHARE command. (16)

• Specify the directory storing the following files for the PATH
environment variable:

− (16): f1bcfutc.dll, f1bcfute.dll, f1bcfrm.dll

− (32): f3bifutc.dll, f3bifute.dll, f3bifrm.dll

Examples of Calling from COBOL

This section shows examples of programs that perform recovery
processing according to the open status.

The following example calls the indexed file recovery function
when a file for storing unrecoverable data and a message are
unnecessary:

Appendix L. Indexed File Recovery 731

732 Appendix L. Indexed File Recovery

The following example calls the indexed file recovery function
when a file for storing unrecoverable data and a message are
necessary:

Appendix L. Indexed File Recovery 733

Codes and Messages

Table 95. Codes and messages returned by the indexed file recovery function (and
simple recovery function)

Code(Decimal) Message
0 n Records were restored. (*1)
1 There was n records which were not able to be restored. (*2)
10 Recovery file not found.
11 Recovery file not the indexed file.
12 Could not access recovery file.
13 Sequential file exists. (*2)
14 Other process accessing the file.
15 Other process recovering the file.
16 Insufficient disk space. (*2)
128 Insufficient memory space.
129 Not DOS 3.1 or later.
130 Not share mode.(DOS SHARE command unload.)
131 Record in recovery file not found. (*2)
132 Contradiction in the file information.

*1 The simple recovery function does not return the message.
*2 The simple recovery function does not return the code and message.

734 Appendix L. Indexed File Recovery

Appendix M. Using Other File
Systems

This appendix explains how to use COBOL85 with the following
file systems:

• Btrieve

• RDM

Btrieve File

A Btrieve file can also be used just like a file system as a
sequential file or indexed file supported by COBOL85.

The Btrieve file access function is supported within the scope of
functions supported by the COBOL file system. Btrieve-specific
functions, however, are not supported.

This section explains how to use the Btrieve file with COBOL85.

For details on how to use the Btrieve file, refer to Btrieve
manuals.

Specifying File Environment

Specify a file-reference-identifier in the ASSIGN clause of the file
control entry to determine whether to use the COBOL file system
or Btrieve Record Manager.

736 Appendix M. Using Other File Systems

If a file-identifier literal is specified as the file-reference-identifier,
specify the file-identifier literal in the following format:

FILE-NAME

Specify the file name or path name of the input-output target file.

NO-SPECIFICATION

The COBOL file system is used.

BTRV

The Btrieve Record Manager is used.

If a data name is specified as the file-reference-identifier, use the
file-identifier literal format to specify the file where the data
name is specified.

If the character string DISK is specified as the file-reference-
identifier, the Btrieve Record Manager cannot be used. The
COBOL file system is used.

If a file-identifier is specified as the file-reference-identifier,
specify the same data as specified in the file-identifier literal
format for the environment variable that defines the file-identifier
as the environment variable name.

The environment variable specification format is:

Appendix M. Using Other File Systems 737

Function Outline

For sequential files, indexed files, COBOL syntax, and basic
usage, refer to the “COBOL85 Reference Manual.”

If the function is more enhanced than the COBOL file system, the
key item attributes in index files can be Alphanumeric characters,
National characters, External decimal numbers, Internal decimal
numbers and Binary numbers.

Unlike the COBOL file system, the following restrictions are
placed on use of the Btrieve Record Manager:

• A relative file cannot be specified

• A data item which is part of a record key cannot be specified
in the START statement

• DISK cannot be specified as the file-reference-identifier

• FILE STATUS = 02 cannot be returned

The following table shows the differences between limitations for
the COBOL file system (COBOL) and the Btrieve record manager
(Btrieve).

738 Appendix M. Using Other File Systems

Table 96. COBOL File System and Btrieve Limits

Description COBOL Btrieve
Maximum record length 32,760 4,090 (fixed length)

32,760 (variable length)
Maximum number of data items specified in
the RECORD KEY clause

254 24 (16bits)
119 (32bits)

Maximum length of all data items specified in
the RECORD KEY clause

254 255

Maximum number of data items specified
in the ALTERNATE RECORD KEY clause

254 23 (16bits)
118(32bits) *1

Maximum length of all data items specified in
the ALTERNATE RECORD KEY clause

254 255

*1 The total of the number of data items specified in the RECORD KEY clause and that
specified in the ALTERNATE RECORD KEY clause can be up to N (24 for 16bits and 119 for
32bits). This value decreases as the number of data items specified in the RECORD KEY
clause increases.

NOTES

A record key must be within an area of 1,024 bytes from the
beginning of the record (16).

A record key must be within an area of 4,088 bytes from the
beginning of the record (32).

The length of a fixed length record and the minimum length of a
variable length record must be in the range 4 to 4,088 bytes. If a
variable length record is used, the Btrieve Record Manager
requires 4 bytes for the overhead.

If a duplicated key (per item) is used, the Btrieve Record
Manager requires 8 bytes for the overhead. The length of a fixed
length record and the minimum length of a variable length
record are decreased by 4 or 8 bytes.

If a record with a file position indicator defined is deleted by the
DELETE statement with random access, the file position
indicator is undefined.

Do not use the extension PRE for a file name to be accessed in an
application. In order to use the pre-image function, do not access

Appendix M. Using Other File Systems 739

multiple Btrieve files having identical names with extensions that
are unique within an application. The pre-image function fails to
define the pre-image file for files when multiple Btrieve files are
accessed.(16)

Up to 18 files for 16bit or 20 files for 32bit can be opened in the
application at the same time.

To use NetWare Btrieve and client-format Btrieve (supported by
this product) together, rename client-format Btrieve
WBTRCALL.DLL to WBTRLOCL.DLL. For details, refer to the
Btrieve manuals.(16)

A Btrieve file created under NetWare 4.1J cannot be accessed.

To enable access to Btrieve files, specify "yes" to "Create Btrieve
Files in Pre v6.x Format" in the Btrieve setup utility. For details,
refer to the Btrieve manuals.(16)

This product contains Btrieve Workstation Engine for Windows
NT/Windows 95 v6.15 (32) and Btrieve Workstation Engine for
Windows NT/Windows 95 v6.10 (16).

For ERFLD=xx and FDBK=xx status codes (xx: hexadecimal),
refer to the “BTRIEVE Programmer’s Manual” and the “Btrieve
for Windows NT/Windows 95 Installation and Operation” by
Btrieve Technologies, Inc..

External Decimal Data Form Conversion (32)

The internal form of this NUMERIC differs from COBOL85 and
is called 88consortium. It is equivalent to the data type of an
external decimal with the sign which is not SEPARATE in
COBOL from the NUMERIC type of Btrieve file (Refer to the
“BTRIEVE Programmer’s Manual” for an internal form of the
NUMERIC data type for Btrieve).

Therefore, a Btrieve file should be used and the data converted
into each form as either an input or output data item before

740 Appendix M. Using Other File Systems

writing and after reading when an external decimal item with the
not SEPARATE sign is used.

This conversion can be done easily in COBOL85 by using a
CALL statement.

Description Form (32)

Conversion from 88consortium to COBOL85 is as follows:

Call "#DEC88TOFJ" USING [BY REFERENCE] name

Conversion from COBOL85 to 88consortium is as follows:

Call "#DECFJTO88" USING [BY REFERENCE] name

Function Outline (32)

At "#DEC88TOFJ", the program name which is called by the
CALL statement, will convert an internal form of an external
decimal item with the without all SEPARATE specification
included in the name or the name from 88consortium into an
internal form of COBOL85.

At "#DECFJTO88", the program name which is called by the
CALL statement, will convert an internal form of an external
decimal item with the without all SEPARATE specification
included in the name or the name from COBOL85 into an
internal form of 88consortium.

If the item is not an external decimal item, using the without
SEPARATE specification will not perform a conversion.

When the name is a group item and the following items are
included in the subordinate items, the item will not be converted:

• Items other than external decimal items with the sign using
the without SEPARATE specification.

Appendix M. Using Other File Systems 741

• Items subordinate to items which specify the REDEFINES
clause as well as the item itself.

• Items which specify the RENAMES clause.

In the following cases, the execution results are not guaranteed.

• The program name called by a CALL statement is specified
by the name and "#DEC88TOFJ" or "DECFJTO88" is specified
by the name.

• "#DEC88TOFJ" or "DECFJTO88" is called by a form different
from the above-mentioned description form (Two or more
names are specified for USING phrase, BY CONTENT phrase
is specified.).

• The name is a group item and the item uses the OCCURS
clause with DEPENDING specification in the subordinate
item.

• When data items are defined in the constant paragraph.

• Data items that refer the part, applies by the name, and is
done.

Notes (32)

Immediately before passing a record to a Btrieve file or
immediately after having received one, do this function call. The
external decimal number of 88consortium form of conversion by
immediately after having input from Btrieve file and this
function cannot be treated by COBOL.

“It is not possible to be treated by COBOL” means that the
results of ‘operates’, ‘compares’ or ‘post as external decimal item’
are not guaranteed. The value of the external decimal of the
88consortium form is guaranteed only in records containing the
external decimal item of the 88consortium form when the group
item is posted to other records.

742 Appendix M. Using Other File Systems

The sorting and merging function cannot be used for Btrieve
files.

Incorrect function calls will be called if an external reference error
of "#DECFJTO88" or "#DEC88TOFJ" occurs when linking.

Example (32)

*1:
External decimal data which becomes the written data before writing in Btrieve file with all signs in
“workarea” which are not SEPARATE is converted from COBOL85 form into 88consortium form.

*2 : External decimal data which before reading after reading of the record from Btrieve file
with all signs in “workarea” which are not SEPARATE is converted from 88consortium
form into COBOL85 form.

Appendix M. Using Other File Systems 743

RDM File

An RDM file can be used just like a file system as a sequential
file, relative file, or indexed file supported by COBOL85. This
section explains how to use the RDM file with COBOL85.

Specifying File Environment

A file-reference-identifier specified in the ASSIGN clause of the
file control entry determines whether to use the COBOL file
system or RDM file system.

If a file-identifier literal is specified as the file-reference-identifier,
specify the file-identifier literal in the following format:

FILE-NAME

Specify the file name or path name of the input-output target file.

NO-SPECIFICATION

The COBOL file system is used.

RDM

The RDM file system is used.

If a data name is specified as the file-reference-identifier, use the
file-identifier literal format to specify the file with the data name
specified.

If the character string DISK is specified as the file-reference-
identifier, the RDM file system cannot be used. The COBOL file
system is used.

744 Appendix M. Using Other File Systems

If a file-identifier is specified as the file-reference-identifier,
specify the same data as specified in the file-identifier literal
format for the environment variable that defines the file-identifier
as the environment variable name.

The environment variable specification format is:

To use the extended function of the RDM file, specify the
following environment variable in addition to the above
specification:

CRDB_XLIB_OVR = file-name,RDM,character-stringindicating-
extended-function [:...]

Function Outline

If the function is more enhanced than COBOL file system
functions, check the key item attributes of indexed files
(alphanumeric data item, national item, external decimal item,
internal decimal item, binary item).

Unlike the COBOL file system, the following restrictions are
placed on use of then RDM file system:

• DISK cannot be specified as the file-reference-identifier

• File sharing and exclusive use of records cannot be specified
in the program

• Variable length records cannot be used

• An optional file can be used in only input open mode. (No
file creation)

Appendix M. Using Other File Systems 745

The following table shows the differences between quantitative
restrictions for the COBOL file system (COBOL) and RDM file
system (RDM).

Table 97. COBOL File System and RDM File System Limits

Description COBOL RDM
 Maximum number of data items specified in the RECORD KEY
clause

254 128

 Maximum length of all data items specified in the RECORD KEY
clause

254 255

 Maximum number of data items specified in the ALTERNATE
RECORD KEY clause

254 (*1) 128

 Maximum length of all data items specified in the ALTERNATE
RECORD KEY clause

254 255

*1 The total of the number of data items specified in the RECORD KEY clause and that
specified in the ALTERNATE RECORD KEY clause can be up to 255. This value decreases as
the number of data items specified in the RECORD KEY clause increases.

If MANUAL is specified in the LOCK MODE clause, records
cannot be locked.

Execute "Relative File Creation" to use a relative file with a
COBOL program. Execute the OPEN statement with OUTPUT
specified to execute "Relative File Creation."

An error message is written or I-O status occurs indicating that
the record does not exist (run-time error JMP0324I-I/U or FS=23)
if the OPEN statement with I-O or EXTEND specified is used to
open a relative file without "Relative File Creation." The WRITE
statement is then executed.

If the disk size is insufficient, the following error message is
output when the CLOSE statement is executed:

JMP0310I-I/U CLOSE ERROR. FILE='file-name or access-name'.
'ERFLD=1C'

746 Appendix M. Using Other File Systems

Appendix N. A COBOL-
Supported Subroutine

This appendix explains a COBOL-supported subroutine.

Subroutine for Receiving the Window Handle

This subroutine receives the FORM RTS window handle when
linked with the presentation file edit function operating under
Windows.

Specification Method

Data definition with Windows 3.1 (16):

01 data-name-1 PIC X(8).
01 data-name-2 PIC S9(4) COMP-5.

With Windows 95 and Windows NT (32):

 01 data-name-1 PIC X(8).
 01 data-name-2 PIC S9(9) COMP-5.

Specification of the CALL statement:

CALL"JMPBGWDH" WITH C LINKAGE USING data-name-1
 data-name-2

Interface

For data-name-1, specify the file-identifier of the presentation file
for receiving the window handle.

For data-name-2, specify the area for storing the window handle
received by the subroutine.

748 Appendix N. COBOL-Supported Subroutine

The presentation file specified for data-name-1 must be specified
for DSP in the SYMBOLIC DESTINATION clause and be opened.

Message

A message is written if:

• The file is not the presentation file

• The file does not exist

Return Codes

Special register PROGRAM-STATUS is used to receive return
codes from the subroutine.

• Return code 0: The window handle was received normally.

• Return code -1: The window handle could not be received.

Notes

This subroutine cannot be used under AP/EFW, or with the
presentation file module test function. (16)

The file-identifier specified for data-name-1 must correspond to a
single file in the run unit. If the file-identifier is associated with
multiple files, the execution result is not guaranteed.

When the DLOAD option is specified at compilation of the
COBOL program that calls this subroutine, the following entry
information must be specified as shown below.

 (16) (32)
 : :
 [program-name.ENTRY] [program-name.ENTRY]
 JMPBGWDH=F1BCILNG.DLL JMPBGWDH=F3BIILNG.DLL
 : :

Appendix N. COBOL-Supported Subroutine 749

Refer to “Entry Information” in Chapter 5 for details on
specifying entry information.

Using the Subroutine from an Application

Figure 145. A sample application using the window handle subroutine

*1: The window handle acquired according to the window handle acquisition
subroutine is notified of application B (Delivery of the data between processes).

*2: READ statement of the display file is executed and enters the state of the
waiting for input from the screen.

*3: The window handle notified from application A is specified for the function
of FORM RTS and the input interruption of the screen is ordered.

*4: The input completion is notified to interrupt the input waiting for the screen
and to have been done to application A compulsorily. The input interruption is
notified of application B.

9E is notified of the I/O state value of READ sentence of the
display file and 9E5A is notified of detailed information.

750 Appendix N. COBOL-Supported Subroutine

Subroutine for Receiving the Instance Handle

The instance handle of the windows COBOL application can be
received.

Specification Method

Data definition:

01 data-name
02 data-name-1 PIC S9(9) COMP-5.
02 FILLER PIC X(12).

Specification of the CALL statement:

CALL "JMPBWINS" WITH C LINKAGE USING data-name.

Interface

For data-name, specify the area for storing the instance handle
received by the subroutine. The instance handle is stored in data-
name.

Notes

When the DLOAD option is specified for a compilation of the
COBOL program by which this subroutine is called, the
following entry information will be needed. Refer to Chapter 5,
“Entry Information” for the method of specifying entry
information.

[program-name.ENTRY]
JMPBWINS=F3BIPRCT.DLL

Index

@
@AllFileExclusive, 134
@CBR_CIINF, 136
@CBR_ENTRYFILE, 136
@CBR_PSFILE_xxx, 136
@CnslBufLine, 133
@CnslFont, 134
@CnslWinSize, 132
@EnvSetWindow, 133
@GOPT, 131
@IconDLL, 131
@IconName, 132
@MessOutFile, 132
@MGPRM, 131
@NoMessage, 137
@ODBC_Inf, 135
@PrinterFontName, 134
@ScrnFont, 134
@ScrnSize, 132
@WinCloseMsg, 133

A
ACCEPT statement

inputting data from a console window, 388
inputting data from a file, 394

ACCEPT statements, 384
ACCEPT/DISPLAY function, 384, 386

using, 392
ACCESS MODE clause, 213
ADDR function, 422

using, 426
alternate keys, 195
alternate record keys, 223
area A, 17
area address, 365
area B, 17
argument value

referring to, 399, 401
ARGUMENT-NUMBER, 399
arguments

obtaining number of, 399, 401
ARGUMENT-VALUE, 399
ASSIGN clause, 199, 200, 237

specifying a data name, 238
specifying a file identifier, 237
when writing character string, 239
when writing file-identifier literal, 239

AT END, 232
defined, 232

B
BASED ON clause, 425
BASED-STORAGE section, 424
building, 170
BY CONTENT, 359

C
C programs

calling from COBOL programs, 364
call programs

referring to command line arguments, 399
CALL statement, 82, 149, 356
CALL statement., 371
called programs, 356
calling programs

from COBOL programs, 356
passing return code values, 360

calling relations, 354
CHARACTER TYPE, 309
CHARACTER TYPE clause, 271
chart record, 308
client, 450
client operation, 453
client operation window, 473
client/server

connecting, 505
disconnecting, 507

COBCI_CLOSE, 480, 484
COBCI_OPEN, 480, 482
COBCI_READ, 485
COBCI_READ/COBCI_WRITE, 480
COBCI_WRITE, 488
COBOL

program descriptions for,, 387
reference format, 16

COBOL file
creating, 252

COBOL files
adding records to, 253

COBOL functions, 2
COBOL programs

calling from C programs, 368
COBOL source program.

creating, 571
COBOL85

compiler, 3
development environment, 7
FILE UTILITY, 6
interactive debugger, 4
programs, 3
supported products, 10
utilities, 3

COBOL85 compiler, 560
functions, 3

COBOL85 debugger, 560
COBOL85 FILE UTILITY, 246, 247

execute commands, 247
functions, 251
using, 246

COBOL85 FILE UTILITY.
environment set-up, 246

COBOL85 run-time system, 560
COBOL85 run-time system information file

(16), 303
COBPRTST command program file, 560
COBPRTST dialog box, 574

activating, 574
using, 577

COBPRTST-Update dialog box

using with presentation file module test
function, 577

common program, 362
communication

input-output statements, 439, 448
record definition, 448

Communication System Environment Setup
dialog box, 454

communication, ACM, 441
compiler

functions, 4
compiler directing statement, 20

description format, 20
CONNECT statement, 505
connecting

multiple servers, 507
CONSOLE, 389
console window

generating, 386
console windows

changing attributes of, 386
reading/writing data using, 386

COPY statement, 18
Create Logical Destination dialog box, 456
creating a COBOL source program, 16
CRT STATUS clause, 346
cursor

operating with more than one connection,
533

D
data

correspondence between ODBC-handled
data and COBOL585-handled data, 548

deleting, 523
input/output destinations, 385
inserting, 523
updating, 522

data correspondence, 548
DATA DIVISION, 310

in print files, 281
data items

defining to deliver values, 400

defining, to store input data, 393
defining, to store output data, 393

data manipulation, 511
data sharing, 359
data types, 552
data, input-output

using ACCEPT/DISPLAY function, 384
database

compiling the program, 535
connection confirmation, 544
retrieving data, 514
retrieving data by relating different tables,

519
retrieving data from a single row, 518
retrieving data from a table where rows are

related, 521
retrieving data from all rows, 514
sample, 512

database access
with an ODBC driver, 502

Database manipulation language (DML), 559
date and time

setting, 398
using ACCEPT statement, 398

default connection information, 541
DELETE statement, 523
Dependent Files dialog box, 182
DISCONNECT statement., 507
disconnecting from a server, 507
DISPLAY statement, 392

outputting data to a console window, 388
outputting data to a file, 395

DISPLAY statements, 384
distributed development support functions,

559
creating environment file, 572
required files for using presentation file

module test function, 569
required operation software and resources,

560
DS registers, 372
Dynamic access, 196, 213, 218, 219, 222
dynamic link libraries (DLL), 76
dynamic link library (DLL)

creating, 85

dynamic link structure, 82
dynamic linkage, 81
dynamic parameters

specifying, 529
dynamic program structure, 82
dynamic SQL, 524

E
editor, 16
embedded SQL

operations, 504
embedded SQL DECLARE section, 515
embedded SQL keyword list, 545
embedded SQL statement

execution limits, 554
embedded SQL statements, 552

notes on executing, 553
entry information, 147
entry information (32)

setting, 160
entry point, 357

primary, 357
secondary, 357

ENTRY statement, 357
environment variable

referring to value of, 404, 405
updating value of, 404, 405

environment variable information (32)
changing, 160
deleting, 160

environment variables
referring to and updating, 399
referring to and updating values of, 403
setting, 8
setting from Command Prompt (32), 123
setting from Control Panel (32), 123
Windows 3.1, 8
Windows NT, 8

environment variables (32)
adding, 158

Environment Variables (Keywords) dialog
box, 159

environment variables handling function, 404

Environment Variables List dialog box (32),
158

ENVIRONMENT-NAME, 404
ENVIRONMENT-VALUE, 404
epilogue codes, 372
EQUALS, 413
Error procedures, 232

defined, 234
error, input-output, 232

detection methods, 232
execution results, 235

EXCLUSIVE, 240
exclusive mode, 240, 242
executable files, 75
executable program

creating, dynamic link structure, 86
creating, dynamic program structure, 88
creating, simple structure, 85
linking single object, 84

executable programs
executing with WINEXEC, 117

EXECUTE statement, 526
executing a subprogram, 357
executing application programs, 188
EXIT PROGRAM statement, 357
EXPORTS, 186
EXTERNAL clause, 359
external program, 361

F
F option, 118
FCBxxxx, 146
FCOM, 566
file access mode, 196
file control entry

contents to be written, 334
contents to be written in, 320

file control entry.
defining print file in, 294

File creation, 244, 252
file descriptor

specifying storage location, 10
File extension, 244, 253

File manipulation, 260
file organization

types and characteristics, 190
File organization conversion, 262
File print, 262
file processing, 196

results, 244
FILE STATUS, 232, 244
FILE STATUS clause, 233
File-identifier, 138, 139, 141, 142, 143, 144
file-reference-identifier, 199
file-reference-identifier., 310
files, assigning, 237
files, exclusive control of, 240
fixed format, 19
fixed length record, 195
FORM, 10, 277, 329
form control buffer (FCB), 276
form descriptors, 277

generating, used by presentation file
module, 318

FORM overlay option, 11
form overlay pattern, 275

programs using, 302
form overlay patterns

printer orders, 303
FORM RTS, 11
formatting source programs, 16
FORMLIB, 340
FOVLDIR, 147
FOVLTYPE, 147
free format, 20
FROM specification, 398
function key

defining, 350
using, when executing a program, 345

function-names
associating with mnemonic names, 400

G
GIVING output-file-name, 413, 418
GLOBAL clause, 363
GS-series format run-time parameter, 126

H
HOPPER, 298
host program

executing, 562
linking, 562

host-specific functions
language construct, used as support

functions, 559

I
I control records, 295
import library, 76

building under Windows NT, 94
creating, 89

INDEXED, 222
indexed file, 194

creating, 228
extending, 229
processing, 226
record key, 195

Indexed file manipulation, 263
indexed files

required file definitions, 222
using, 221

indicator area, 17
INITIAL clause, 362
initial program, 362
initial state, 362
initialization file, 123

creating, 536
modifying contents of, 125
section types, 124

initialization file (32), 161
Input file, 412, 417
INPUT PROCEDURE, 412
Input-output processing

executing, 338
input-output statements, 215, 337

execution orders, 218
INSERT statement, 523
internal program, 361

calling, 362

inter-program communication, 353
INVALID KEY, 232

defined, 233
item control field

input-output options, 319
options, 333

K
keys, record, 195

L
L option, 118
LENG function, 422

using, 426
LIB, 184
library

building, 100
creating, by linking, 89
entering object files, 100

Library Name edit box, 100
library text

creating, 18
line feed character, 17
LINE SEQUENTIAL, 207
line sequential file, 192

processing, 208
line sequential files, 206
LINK command, 102, 373
linkage rules

and supporting compilers, 356
differences of,, 355

linker messages, 105
under Windows 3.1 (16), 107

Linker Options
under Windows NT (32), 95

linking
examples of, C programs that call COBOL

programs, 377
host program, 562
object programs using commands, 101
required files, 71
starting, 97

through window operation, 84
under Windows 3.1 (16), 103
using WINLINK command, 84

linking C programs, 373
LOCK MODE clause, 240
Logging Operation dialog box, 463
logical destination

changing mode, 459
creating, 456
deleting, 457

logical destination definition file creation
utility, 474

logs
collecting, 463

M
making, 170
memory, 478
merge, 408, 415

types, 417
MERGE statement, 418
message

sending, 392
message boxes, 390
message communication, 432
message file, 6
message transfer, 449
messages

outputting to message boxes, 390
M-host, 125, 573
mnemonic-name, 271
module definition file, 185

applications, 80
DLL, 80
formats, 79
required statements, 77
under Windows 3.1 (16), 78
under Windows NT (32), 76

module definition file (16)
creating, 186

module definition file (32)
creating, 185

module definition statements, 78

under Windows NT (32), 77
multiple object programs, 81

N
NOALPHAL, 371
NULL, 127
numeric data item, 427

O
object program, 3
ODBC (Open DataBase Connectivity),, 501
ODBC driver, 502, 552
ODBC environment

setup, 543
ODBC information file

creating, 537
specifications, 543

ODBC Information Setup Tool, 536, 537
using, 542

operating environment
using the presentation file module with the

servers, 435
option file, 170
ORGANIZATION, 200
Output file, 412, 418
OUTPUT PROCEDURE, 413
OUTPUT PROCEDURE output-procedure-

name, 418
OVD_SUFFIX, 147
overlay patterns, 11

P
passing parameters, 358

from C programs to COBOL programs, 369
from COBOL programs to C programs, 365

PERFORM statement, 423, 428
PERFORM statement without an AT END

condition, 428
pointer, 422

required data items, 423
using, 423

pointer data item, 427
pointer qualification, 424
pointer qualifier, 424
Power FORM, 10
presentation file, 436

features and uses, 328
in ENVIRONMENT DIVISION, 333
module test function, 6

Presentation file function, 328
requirements, 331

presentation file module, 432, 435, 443
data transfer, 435
environment setup, 440
requirements, 329
requirements to print forms, 317
using, 434
using connected products to enable

communication functions using, 435
using for screen input-output, 329
using screen descriptors, 329
using, for each COBOL division, 333

presentation file module test function
using, 573

presentation file module test function.
opreating environment, 568

prime keys, 195, 223
print characters, 271

fonts of, 273
forms of, 273
size of, 272
spaces, 273

print file, 192
defining, 279
defining in a file control entry, 309
defining in file control entry, 281
ENVIRONMENT DIVISION, 280
executing a program that uses form

descriptors, 314
form descriptors used with, 314
program descriptions, 280
required environments to execute a

program, 314
using with FCB, 305

print files, 268
using, with form descriptors, 307

writing programs using form descriptors in,
308

print format, 297
print lines

control of, 283
print side, 298
printer

assigning, 283
input-output statement, 311

printer information file
assigning, 310
assigning to file identifier specified in the

ASSIGN clause, 315
specified with a relative path name, 314
specifying a file-reference identifier, 310

printer modes (orders), 304
printer modes (orders):, 304
printer programs, 287
PRINTERSEQUENCE, 303
printing, 267

conrol records, 295
defining ENVIRONMENT DIVISION, 294
forms using form overlay patters, 293
procedures, 299
using a presentation file, 271
using a print file without a FORMAT

clause, 270
using form overlay pattern with a print file,

292
using print file with a FORMAT clause,

270
printing data

in line mode, 278
printing forms, 308

required environments with presentation
file module, 324

using a presentation file, 315
using input-output statements, 322
using presentation file module, 316
with presentation file module, 323

printing methods, 268
Program

executing using form overlay pattern and
FCB, 302

executing with WINEXEC, 110

setting run-time environment information,
117

under Windows 3.1 (16), 117
program development, 11

operating with GS, 556
PROGRAMMING-STAFF (P-STAFF), 5
Programs

executing from WINEXEC, 118
writing, using screen handling function,

346
writing, when printing forms with

presentation file modules, 319
PROGRAM-STATUS, 360, 369, 484
project

building or rebuilding, 187
project file, 170

creating, 176
project management

procedures, 173
project management function., 170
Project window, 175, 187
P-STAFF, 5

R
R, 296
Random access, 196, 213, 218, 219, 222
rebuilding, 170
Record browse, 256
RECORD clause, 201
Record edit, 258
Record reference, 244
record sequential file, 191
record sequential files, 198

defining, 199
fixed length, 201
processing, 202
variable length, 201

Record sort, 260
Record updating, deletion, and insertion, 244
records

deleting, 220, 231
inserting, 220, 231
locking, 241

referring to, 219, 229
sorting, 411
updating, 219, 230

reference format
types, 19

registering files, 177
registering library files, 180
registering other required files, 182
registering source files, 178
registering target files, 177
RELATIVE, 213
relative file, 193, 213

creating, 218
extending, 218
processing, 215

relative files, 211
RELATIVE KEY clause, 214
relative record number, 214, 218
relative record numbers, 193
return codes, 366
ROLLBACK statement, 515
run-time environment information, 125

entry information, 119
environment variable information, 119
format, 129
setting, 122
setting from command line, 125
under Windows NT and 95, 121

Run-time environment information (32)
setting, 158

Run-time Environment Setup window, 125
Run-time Environment Setup window (16),

162
Run-time Environment Setup window (32),

155
run-time options, 128

format, 166
run-time system, 4

S
S control records, 295
screen descriptors

generating, used by presentation file
module, 332

information requirements, 332
Screen handling function, 328, 344

explanation, 343
screen handling functions

features and uses, 328
screen input-output, 328

functions, 328
screen window, 344
work procedure of, with presentation file

module, 332
screen input-output processing

required environments, using presentation
file module, 341

screen input-output status, 346
values, 346

screen layout, 344
SCREEN section, 347
screen transition, 570
search conditions

specifying at execution, 524
SELECT clause, 200
SELECTED FUNCTION clause, 339
sequence number area, 17
SEQUENTIAL, 200
Sequential access, 196, 213, 218, 219, 222
server

quitting, 467
server information

defining, 538
server operation, 451
server windows

operating, 454
SET CONNECTION statement, 507
setting compiler options, 183
setting the main program, 180
SHARE, 117
share mode, 242
SIA COBOL syntax, 555
simple structure, 81
simplified inter-application communication

error codes, 493
simplified inter-application communication, 6,

449

client/server procedures, 451
functions, 480
using, 449

simplified inter-application communication
function, 432

Simplified Inter-application Communication
Server window, 456
displaying information, 461

sort, 408
types, 411

sort processing, 414
SORT statement, 412
Sort-merge file, 412, 414, 417, 419
SORT-STATUS, 418
source program

creating, 16
reference format, 19

special registers
input-output, 339

SQL statements, 508
determining, dynamically, 526

SQLCODE, 550
SQLMSG, 550
SQLSTATE, 515, 550
SS registers, 372
SSIN, 396
SSOUT, 396
stack checks, 372
static linkage, 81
STOP RUN statement, 357
subprograms

returning control from, 357
subschema name paragraph, 566
SYSERR, 391, 392
SYSIN-access-name, 145
SYSOUT-access-name, 145
system program description (SD) functions,

421, 422

T
TAB character, 17
TERMINATOR, 146, 345
TRANSACTION management statement, 559

Types of Input-Output Using Screens, 328

U
UPDATE statement, 522
UPON clause, 392
USE FOR DB-EXCEPTION statement, 560
USE FOR DEAD-LOCK statement, 560
USE procedure, 567
USING clause, 365
USING input-file-name, 412
Using the Screen Handling Function, 343
UWA, 566

V
variable format, 19
variable length character string, 530
variable length character string data, 530
variable length record, 195

W
WINCOB, 6
window attributes

changing for screen handling, 345
window information file

generating, to perform input-output
processing, 340

WINEXEC, 6, 152
WINLINK, 6, 71, 90

files used by, 71
using, 68, 70

WINLINK [Building COBOL Libraries]
window, 98

WINLINK [Linking Files] window, 91
WINLINK window

activating, 90
WINMSG (16), 6
WITH LOCK, 240

